2020屆高考物理二輪復(fù)習(xí) 專題沖刺 專題復(fù)習(xí)篇四 解決物理問題的三條途徑練習(xí)(含解析)
《2020屆高考物理二輪復(fù)習(xí) 專題沖刺 專題復(fù)習(xí)篇四 解決物理問題的三條途徑練習(xí)(含解析)》由會員分享,可在線閱讀,更多相關(guān)《2020屆高考物理二輪復(fù)習(xí) 專題沖刺 專題復(fù)習(xí)篇四 解決物理問題的三條途徑練習(xí)(含解析)(28頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、解決物理問題的三條途徑 要點提煉 1.三條途徑 (1)以牛頓運動定律和運動學(xué)公式為基礎(chǔ)用動力學(xué)的觀點解決問題。 (2)以功與能的關(guān)系、動能定理、機械能守恒定律和能量守恒定律為基礎(chǔ)用能量的觀點解決問題。 (3)以動量定理和動量守恒定律為基礎(chǔ)用動量的觀點解決問題。 2.三條途徑的選用 (1)如果要列出各物理量在某一時刻的關(guān)系式,已知力的作用情形,涉及加速度、時間,則用動力學(xué)觀點解決問題。 (2)能量變化反映力在空間上的積累,即Ek2-Ek1=∑F合·Δx=W合,Ep2-Ep1=∑(-F場·Δx)=-W場,F(xiàn)場=-,功初、末狀態(tài)的能量變化。如果不需要求解運動過程細節(jié),且已知(
2、或隱含)力與位移的關(guān)系,優(yōu)先用能量的觀點解決問題。例如在涉及相對位移問題時則優(yōu)先考慮能量守恒定律,系統(tǒng)克服摩擦力所做的總功等于系統(tǒng)機械能的減少量,即轉(zhuǎn)變?yōu)橄到y(tǒng)內(nèi)能的量。 (3)動量變化反映力在時間上的積累,即p2-p1=∑F·Δt=I,F(xiàn)=,沖量初、末狀態(tài)的動量變化。如果不需要求解運動過程細節(jié),且已知(或隱含)力和時間的關(guān)系,優(yōu)先用動量的觀點解決問題。例如碰撞、反沖問題(相互作用力大小、作用時間均相等),用微元法(∑F·Δt=∑mΔv)求解碰撞產(chǎn)生的作用力、碰撞產(chǎn)生的壓強、正比于速度的阻力作用一段距離后的速度。 注:對于實際物理問題,經(jīng)常要綜合使用三條途徑解決問題。原則上求解整個過程用
3、能量、動量的觀點,求解運動細節(jié)用動力學(xué)的觀點,這要通過多加練習(xí)才能體會到。 3.物理學(xué)中的幾種功能關(guān)系 (1)合外力做功與動能的關(guān)系:W合=ΔEk。 (2)重力做功與重力勢能的關(guān)系:WG=-ΔEp。 (3)彈簧彈力做功與彈性勢能的關(guān)系:W彈=-ΔEp彈。 (4)電場力做功與電勢能的關(guān)系:W電=-ΔEp電。 (5)分子力做功與分子勢能的關(guān)系:W分子=-ΔEp分子。 (6)除重力、系統(tǒng)內(nèi)彈力以外其他力做功與機械能的關(guān)系:W其他=ΔE機。 (7)滑動摩擦力與內(nèi)能的關(guān)系:fl相對=ΔE內(nèi)。 (8)安培力做功:WA>0時,WA=ΔE機(若除重力、彈簧彈力外只有安培力做功,則安培力所做的
4、正功等于增加的機械能);WA<0時,WA=-E電(克服安培力所做的功等于產(chǎn)生的電能)。 (9)外界對氣體做功與氣體內(nèi)能的關(guān)系:ΔU=W+Q。(ΔU表示內(nèi)能的增量,Q表示從外界吸收的熱量) 高考考向1 解決力學(xué)問題的三條途徑 命題角度1 動力學(xué)觀點在力學(xué)中的應(yīng)用 例1 (2019·江蘇高考)如圖所示,質(zhì)量相等的物塊A和B疊放在水平地面上,左邊緣對齊。A與B、B與地面間的動摩擦因數(shù)均為μ。先敲擊A,A立即獲得水平向右的初速度,在B上滑動距離L后停下。接著敲擊B,B立即獲得水平向右的初速度,A、B都向右運動,左邊緣再次對齊時恰好相對靜止,此后兩者一起運動至停下。最大靜摩擦力等于滑動摩擦力,
5、重力加速度為g。求: (1)A被敲擊后獲得的初速度大小vA; (2)在左邊緣再次對齊的前、后,B運動加速度的大小aB、aB′; (3)B被敲擊后獲得的初速度大小vB。 解析 A、B的運動過程如圖所示: (1)設(shè)A、B的質(zhì)量均為m,先敲擊A時,由牛頓第二定律可知, A的加速度大小aA==μg 在B上滑動時有2aAL=v 解得:vA=。 (2)對齊前,B所受A的摩擦力大小fA=μmg,方向向左, 地面的摩擦力大小f地=2μmg,方向向左, 合外力大小F=fA+f地=3μmg 由牛頓第二定律F=maB,得aB=3μg 對齊后,A、B整體所受合外力大小F′=f地=2μ
6、mg 由牛頓第二定律F′=2maB′,得aB′=μg。 (3)設(shè)敲擊B后經(jīng)過時間t,A、B達到共同速度v,位移分別為xA、xB,A的加速度大小等于aA 則v=aAt,v=vB-aBt xA=aAt2,xB=vBt-aBt2 且xB-xA=L 解得:vB=2。 答案 (1) (2)3μg μg (3)2 (1)利用動力學(xué)觀點解決力學(xué)問題的思路 (2)板塊模型中的臨界條件 ①滑塊與滑板存在相對滑動的臨界條件 a.運動學(xué)條件:若兩物體速度和加速度不等,則會相對滑動。 b.動力學(xué)條件:假設(shè)兩物體間無相對滑動,先用整體法算出一起運動的加速度,再用隔離法算出其中一個物體“所
7、需要”的摩擦力f;比較f與最大靜摩擦力fm的關(guān)系,若f>fm,則發(fā)生相對滑動。 ②滑塊滑離滑板的臨界條件 當(dāng)滑板的長度一定時,滑塊可能從滑板滑下,恰好滑到滑板的邊緣時共速是滑塊滑離滑板的臨界條件。 備課記錄:
8、 1-1 (2019·河南安陽二模)如圖所示,質(zhì)量為m=2.0 kg的物體靜止在光滑的水平地面上。t=0時刻起物體在一水平向右的恒力F1=1.0 N的作用下開始運動,經(jīng)過一段時間t0后,恒力大小變?yōu)镕2=2.6 N,方向改為水平向左。在t=12.0 s時測得物體運動的瞬時速度大小v=6.24 m/s,則t0為( ) A.12.1 s B.6.0 s C.5.2 s D.2.6 s 答案 C 解析 由牛頓第二定律可得:a1==0.5 m/s2,a2==1.3 m/s2,若t=12 s時速度方向向左,由題意列出運動學(xué)方程為:-a1t0+a2(t-t0)
9、=v,解得:t0=5.2 s;若t=12 s時速度方向向右,由題意列出運動學(xué)方程為:a1t0-a2(t-t0)=v,解得t0=12.13 s>12 s,不符合題意,故A、B、D錯誤,C正確。 1-2 (2019·貴州畢節(jié)二模)一長木板置于粗糙水平地面上,木板右端放置一小物塊,如圖所示。木板與地面間的動摩擦因數(shù)μ1=0.1,物塊與木板間的動摩擦因數(shù)μ2=0.4。t=0時刻開始,小物塊與木板一起以共同速度向墻壁運動,當(dāng)t=1 s時,木板以速度v1=4 m/s與墻壁碰撞(碰撞時間極短)。碰撞前后木板速度大小不變,方向相反。運動過程中小物塊第一次減速為零時恰好從木板上掉下。已知木板的質(zhì)量是小物塊質(zhì)量
10、的15倍,重力加速度大小g取10 m/s2。求:
(1)t=0時刻木板的速度;
(2)木板的長度。
答案 (1)5 m/s (2) m
解析 (1)小物塊與木板一起向墻壁運動時,
由牛頓第二定律:μ1(M+m)g=(M+m)a1
設(shè)t=0時刻木板的速度為v0,
由運動學(xué)公式:v1=v0-a1t
代入數(shù)據(jù)求得:v0=5 m/s。
(2)碰撞后,對物塊:μ2mg=ma2
設(shè)當(dāng)物塊速度為0時,經(jīng)歷的時間為t1,發(fā)生的位移大小為x1,則有x1=,x1=t1
對木板,由牛頓第二定律:μ2mg+μ1(M+m)g=Ma3
式中M=15m,解得a3= m/s2 11、可知物塊速度減為0時,木板速度還未減為0。
設(shè)木板在此時間t1內(nèi)發(fā)生的位移大小為x2,則有
x2=v1t1-a3t
木板長度l=x1+x2代入數(shù)據(jù)可得l= m。
命題角度2 能量觀點在力學(xué)中的應(yīng)用
例2 (2019·江蘇高考)(多選)如圖所示,輕質(zhì)彈簧的左端固定,并處于自然狀態(tài)。小物塊的質(zhì)量為m,從A點向左沿水平地面運動,壓縮彈簧后被彈回,運動到A點恰好靜止。物塊向左運動的最大距離為s,與地面間的動摩擦因數(shù)為μ,重力加速度為g,彈簧未超出彈性限度。在上述過程中( )
A.彈簧的最大彈力為μmg
B.物塊克服摩擦力做的功為2μmgs
C.彈簧的最大彈性勢能為μmgs
D 12、.物塊在A點的初速度為
解析 物塊向左運動壓縮彈簧,彈簧最短時,彈簧彈力最大,物塊具有向右的加速度,彈簧彈力大于摩擦力,即Fm>μmg,A錯誤;根據(jù)功的公式,物塊克服摩擦力做的功W=μmgs+μmgs=2μmgs,B正確;從物塊將彈簧壓縮到最短至物塊運動到A點靜止的過程中,根據(jù)能量守恒定律,彈簧的彈性勢能通過摩擦力做功轉(zhuǎn)化為內(nèi)能,故Epm=μmgs,C正確;根據(jù)能量守恒定律,在整個過程中,物體的初動能通過摩擦力做功轉(zhuǎn)化為內(nèi)能,即mv2=2μmgs,所以v=2,D錯誤。
答案 BC
利用能量觀點解決力學(xué)問題的思路
(1)明確研究對象和研究過程。
(2)進行運動分析和受力分析。
(3 13、)選擇所用的規(guī)律列方程求解。
①動能定理:需要明確初、末動能,明確力的總功,適用于所有情況。
②機械能守恒定律:根據(jù)機械能守恒條件判斷研究對象的機械能是否守恒,只有滿足機械能守恒的條件時才能應(yīng)用此規(guī)律。
③功能關(guān)系:根據(jù)常見的功能關(guān)系求解,適用于所有情況。
④能量守恒定律:適用于所有情況。
(4)對結(jié)果進行討論。
備課記錄:
14、
2-1 (2019·湖北八校聯(lián)合二模)(多選)如圖所示,輕質(zhì)彈簧一端固定,另一端與質(zhì)量為m的圓環(huán)相連,圓環(huán)套在傾斜的粗糙固定桿上,桿與水平面之間的夾角為α,圓環(huán)在A處時彈簧豎直且處于原長。將圓環(huán)從A處由靜止釋放,到達C處時速度為零。若圓環(huán)在C處獲得沿桿向上的速度v,恰好能回到A。已知AC=L,B是AC的中點,彈簧始終在彈性限度之內(nèi),重力加速度為g,則( )
A.下滑過程中,其加速度先減小后增大
B.下滑過程中,環(huán)與桿摩擦產(chǎn)生的熱量為m 15、v2
C.從C到A過程,彈簧對環(huán)做功為mgLsinα-mv2
D.環(huán)經(jīng)過B時,上滑的速度小于下滑的速度
答案 AC
解析 環(huán)由A到C,初速度和末速度均為0,環(huán)先加速后減速,加速度先減小后增大,故A正確;環(huán)由A到C,有mgLsinα=EpC+Q,環(huán)由C到A,有EpC+mv2=Q+mgLsinα,解得Q=mv2,EpC=mgLsinα-mv2,故B錯誤,C正確;由功能關(guān)系可知,圓環(huán)由A下滑至B,有mgh′-Wf′-W彈′=mv-0,圓環(huán)由B上滑至A,有-mgh′-Wf′+W彈′=0-mvB′2,故可知,環(huán)經(jīng)過B時,上滑的速度大于下滑的速度,故D錯誤。
2-2 (2019·湖南衡陽三模)如 16、圖所示,電動機帶動傾角為θ=37°的傳送帶以v=8 m/s的速度逆時針勻速運動,傳送帶下端點C與水平面CDP平滑連接,B、C間距L=20 m;傳送帶在上端點B恰好與固定在豎直平面內(nèi)的半徑為R=0.5 m的光滑圓弧軌道相切,一輕質(zhì)彈簧的右端固定在P處的擋板上,質(zhì)量m=2 kg可看做質(zhì)點的物體M靠在彈簧的左端D處,此時彈簧處于原長,C、D間距x=1 m,PD段光滑,DC段粗糙,現(xiàn)將M壓縮彈簧一定距離后由靜止釋放,M經(jīng)過DC沖上傳送帶,經(jīng)B點沖上光滑圓孤軌道,通過最高點A時對A點的壓力為8 N。上述過程中,M經(jīng)C點滑上傳送帶時,速度大小不變,方向變?yōu)檠貍魉蛶Х较?。已知M與傳送帶間的動摩擦因數(shù)為μ1= 17、0.8、與CD段間的動摩擦因數(shù)為μ2=0.5,重力加速度大小g=10 m/s2。求:
(1)在圓弧軌道的B點時物體的速度;
(2)M在傳送帶上運動的過程中,帶動傳送帶的電動機由于運送M多輸出的電能E;
(3)M釋放前,系統(tǒng)具有的彈性勢能Ep。
答案 (1)5.0 m/s (2)512 J (3)19 J
解析 (1)由題給條件和牛頓第三定律知,M在A點時受到軌道的壓力FA=8 N,
由牛頓第二定律:mg+FA=m
解得vA= m/s,
從B到A機械能守恒,有:
-mg(R+Rcosθ)=mv-mv
解得vB=5.0 m/s。
(2)M在傳送帶上運動時由于vB小于傳送帶 18、速度,可知物體一直做加速運動,所受摩擦力一直沿傳送帶向上
由μ1mgcosθ-mgsinθ=ma
解得a=0.4 m/s2
由公式:v-v=2aL,解得vC=3 m/s
由vB=vC+at解得t=5 s;
傳送帶在t時間內(nèi)的位移:x1=vt=40 m,
由于物體對傳送帶有沿傳送帶向下的摩擦力,要維持傳送帶勻速運動,故電動機要額外給傳送帶一個沿傳送帶向上的牽引力,大小與物體受到的摩擦力一樣大,
牽引力做的功W=μ1mgcosθ·x1=512 J,
多輸出的電能E=W=512 J。
(3)設(shè)彈簧彈力對物體做功為W彈,則從彈簧的壓縮端到C點,對M由動能定理:
W彈-μ2mgx=m 19、v-0
解得:W彈=19 J
可知Ep=W彈=19 J。
命題角度3 動量觀點在力學(xué)中的應(yīng)用
例3 (2019·全國卷Ⅰ)豎直面內(nèi)一傾斜軌道與一足夠長的水平軌道通過一小段光滑圓弧平滑連接,小物塊B靜止于水平軌道的最左端,如圖a所示。t=0時刻,小物塊A在傾斜軌道上從靜止開始下滑,一段時間后與B發(fā)生彈性碰撞(碰撞時間極短);當(dāng)A返回到傾斜軌道上的P點(圖中未標出)時,速度減為0,此時對其施加一外力,使其在傾斜軌道上保持靜止。物塊A運動的v-t圖象如圖b所示,圖中的v1和t1均為未知量。已知A的質(zhì)量為m,初始時A與B的高度差為H,重力加速度大小為g,不計空氣阻力。
(1)求物 20、塊B的質(zhì)量;
(2)在圖b所描述的整個運動過程中,求物塊A克服摩擦力所做的功;
(3)已知兩物塊與軌道間的動摩擦因數(shù)均相等。在物塊B停止運動后,改變物塊與軌道間的動摩擦因數(shù),然后將A從P點釋放,一段時間后A剛好能與B再次碰上。求改變前后動摩擦因數(shù)的比值。
解析 (1)根據(jù)圖b,v1為物塊A在碰撞前瞬間速度的大小,為其碰撞后瞬間速度的大小。設(shè)物塊B的質(zhì)量為m′,碰撞后瞬間的速度大小為v′。由動量守恒定律和機械能守恒定律有
mv1=m+m′v′①
mv=m2+m′v′2②
聯(lián)立①②式得m′=3m③
(2)在圖b所描述的運動中,設(shè)物塊A與傾斜軌道間的滑動摩擦力大小為f,下滑過程中所走過 21、的路程為s1,返回過程中所走過的路程為s2,P點離水平軌道的高度為h,整個過程中克服摩擦力所做的功為W。由動能定理有
mgH-fs1=mv-0④
-(fs2+mgh)=0-m2⑤
從圖b所給出的v-t圖線可知
s1=v1t1⑥
s2=··(1.4t1-t1)⑦
由幾何關(guān)系=⑧
物塊A在整個過程中克服摩擦力所做的功為
W=fs1+fs2⑨
聯(lián)立④⑤⑥⑦⑧⑨式可得W=mgH⑩
(3)設(shè)傾斜軌道傾角為θ,物塊與軌道間的動摩擦因數(shù)在改變前為μ,有
W=μmgcosθ·?
設(shè)物塊B在水平軌道上能夠滑行的距離為s′,由動能定理有-μm′gs′=0-m′v′2?
設(shè)改變后的動摩擦因 22、數(shù)為μ′,由動能定理有
mgh-μ′mgcosθ·-μ′mgs′=0?
聯(lián)立①③④⑤⑥⑦⑧⑩???式可得=。
答案 (1)3m (2)mgH (3)
利用動量觀點解決力學(xué)問題的思路
(1)確定研究對象和研究過程。
(2)兩種解題途徑
①動量守恒定律:判斷研究過程中所研究對象動量是否守恒,若守恒,則可用動量守恒定律列方程。(常與機械能守恒定律或能量守恒定律結(jié)合)。
②動量定理:明確初、末狀態(tài)的動量,明確總沖量。
(3)對結(jié)果進行討論。
備課記錄:
23、
3-1 (2019·全國卷Ⅰ)最近,我國為“長征九號”研制的大推力新型火箭發(fā)動機聯(lián)試成功,這標志著我國重型運載火箭的研發(fā)取得突破性進展。若某次實驗中該發(fā)動機向后噴射的氣體速度約為3 km/s,產(chǎn)生的推力約為4.8×106 N,則它在1 s時間內(nèi)噴射的氣體質(zhì)量約為( )
A.1.6×102 kg B.1.6× 24、103 kg
C.1.6×105 kg D.1.6×106 kg
答案 B
解析 設(shè)1 s內(nèi)噴出氣體的質(zhì)量為m,噴出的氣體與該發(fā)動機的相互作用力為F,由動量定理知Ft=mv,m== kg=1.6×103 kg,B正確。
3-2 (2019·天津市和平區(qū)三模)利用沖擊擺測量速度的實驗,可以簡化為圖示模型,一質(zhì)量M=0.8 kg的木塊,用長L=0.8 m的細繩懸掛在天花板上,處于靜止狀態(tài)。一質(zhì)量m=0.2 kg的小球以某一水平速度射向木塊,小球與木塊相互作用時間極短,并嵌在木塊里,測得小球與木塊上升最大高度為0.2 m,小球、木塊的大小與繩長相比可以忽略,不計空氣阻力,重力加速度g=1 25、0 m/s2。求:
(1)小球與木塊共速瞬時,小球和木塊共同速度v的大小;
(2)小球和木塊一起擺動過程中,細繩受到的最大拉力T;
(3)小球射入木塊的速度v0大小。
答案 (1)2 m/s (2)15 N (3)10 m/s
解析 (1)小球與木塊共速后上擺的過程中,根據(jù)機械能守恒定律可得:
(M+m)v2=(M+m)gh
解得v=2 m/s。
(2)小球與木塊剛共速時,細繩受到的拉力最大,選木塊和小球為研究對象
由牛頓第二定律得T-(M+m)g=(M+m)
解得T=15 N。
(3)根據(jù)動量守恒定律得mv0=(m+M)v,
解得v0=10 m/s。
高考考 26、向2 解決電磁學(xué)問題的三條途徑
命題角度1 動力學(xué)觀點在電磁學(xué)中的應(yīng)用
例4 (2019·全國卷Ⅲ)空間存在一方向豎直向下的勻強電場,O、P是電場中的兩點。從O點沿水平方向以不同速度先后發(fā)射兩個質(zhì)量均為m的小球A、B。A不帶電,B的電荷量為q(q>0)。A從O點發(fā)射時的速度大小為v0,到達P點所用時間為t;B從O點到達P點所用時間為。重力加速度為g,求:
(1)電場強度的大?。?
(2)B運動到P點時的動能。
解析 (1)設(shè)電場強度的大小為E,小球B運動的加速度為a。根據(jù)牛頓第二定律、運動學(xué)公式和題給條件,有
mg+qE=ma①
27、a2=gt2②
聯(lián)立①②式得E=③
(2)設(shè)B從O點發(fā)射時的速度大小為v1,到達P點時的動能為Ek,O、P兩點的高度差為h,根據(jù)動能定理有
Ek-mv=mgh+qEh④
且有v1=v0t⑤
h=gt2⑥
聯(lián)立③④⑤⑥式得
Ek=2m(v+g2t2)。
答案 (1) (2)2m(v+g2t2)
利用動力學(xué)觀點解決電磁學(xué)問題的思路
備課記錄:
28、
4-1 (2019·河南六市高三第二次聯(lián)考)如圖所示為測磁感應(yīng)強度大小的一種方式。邊長為l、一定質(zhì)量的等邊三角形導(dǎo)線框用絕緣細線懸掛于天花板,導(dǎo)線框中通以逆時針方向的電流。圖中虛線過ab邊中點和ac邊中點,在虛線的下方存在垂直于導(dǎo)線框向里的勻強磁場,導(dǎo)線框中的電流大小為I。此時導(dǎo)線框處于靜止狀態(tài),通過傳感器測得細線中的拉力大小為F1;保持其他條件不變,現(xiàn)將虛線下方的磁場移至虛線上方,待線框穩(wěn)定后,測得細線中拉力 29、大小為F2。則磁感應(yīng)強度大小為( )
A. B.
C. D.
答案 A
解析 當(dāng)磁場在虛線下方時,通電導(dǎo)線的等效長度為l,電流方向向右,受到的安培力方向豎直向上,故F1+BIl=mg,當(dāng)磁場在虛線上方時,通電導(dǎo)線的等效長度為l,電流方向向左,受到的安培力方向豎直向下,故F2=BIl+mg,聯(lián)立可得B=,A正確。
4-2 (2019·山西高三二模)電磁緩沖車是利用電磁感應(yīng)原理進行制動緩沖,它的緩沖過程可以等效為:小車底部安裝有電磁鐵(可視為勻強磁場),磁感應(yīng)強度大小為B,方向豎直向下。水平地面埋著水平放置的單匝閉合矩形線圈abcd,如圖甲所示。小車沿水平方向通過線圈上方, 30、線圈與磁場的作用連同其他阻力使小車做減速運動,從而實現(xiàn)緩沖,俯視圖如圖乙所示。已知線圈的總電阻為r,ab邊長為L(小于磁場的寬度)。小車總質(zhì)量為m,受到的其他阻力恒為F,小車上的磁場邊界MN與ab邊平行,當(dāng)邊界MN剛抵達ab邊時,速度大小為v0。求:
(1)邊界MN剛抵達ab邊時線圈中感應(yīng)電流I的大?。?
(2)整個緩沖過程中小車的最大加速度am的大小。
答案 (1) (2)
解析 (1)磁場邊界MN剛抵到ab邊時,線圈中產(chǎn)生的感應(yīng)電動勢為E=BLv0
根據(jù)閉合電路歐姆定律可得,感應(yīng)電流I=
解得:I=。
(2)小車上的磁場邊界MN剛抵達ab邊時,小車的加速度最大,
根據(jù)右手 31、定則可判斷感應(yīng)電流的方向為從b流到a,
根據(jù)左手定則可判斷線框所受安培力方向水平向右,大小為FA=BIL
則由牛頓第三定律可知小車受到的磁場力大小為:FA′=FA,方向水平向左
由牛頓第二定律:FA′+F=mam
解得:am=。
命題角度2 能量觀點在電磁學(xué)中的應(yīng)用
例5 (2019·天津高考)如圖所示,在水平向右的勻強電場中,質(zhì)量為m的帶電小球,以初速度v從M點豎直向上運動,通過N點時,速度大小為2v,方向與電場方向相反,則小球從M運動到N的過程( )
A.動能增加mv2 B.機械能增加2mv2
C.重力勢能增加mv2 D.電勢能增加2mv2
解析 動能變化 32、量ΔEk=m(2v)2-mv2=mv2,A錯誤;小球從M運動到N的過程中,只有重力和電場力做功,機械能的增加量等于電勢能的減少量,帶電小球在水平方向做向左的勻加速直線運動,由運動學(xué)公式得(2v)2-0=2x,則電勢能減少量ΔEp電=W電=qEx=2mv2,故B正確,D錯誤;小球在豎直方向做勻減速運動,速度減小到零,由-v2=-2gh,得重力勢能增加量ΔEp重=mgh=mv2,C錯誤。
答案 B
(1)動能定理在力學(xué)和電場中應(yīng)用時的“三同一異”
(2)功能關(guān)系在力學(xué)和電磁感應(yīng)中應(yīng)用時的“三同三異”
備課記錄: 33、
5-1 (2019·廣西欽州三模)如圖所示,虛線a、b、c代表電場中三條電場線,實線為一帶正電的粒子僅在電場力作用下通過該區(qū)域的運動軌跡,P、Q是這條軌跡上的兩點。下列判斷中正確的是( )
A.P點的電勢比Q點的電勢高
B.P點的場強比Q點的場 34、強大
C.帶電粒子通過Q點時電勢能比P點時小
D.帶電粒子通過Q點時動能比P點時大
答案 B
解析 若帶電粒子從P點進入電場,由圖可知帶電粒子所受電場力沿電場線向右,由于粒子帶正電,故電場線方向向右,故P點的電勢低于Q點的電勢,A錯誤;由于電場線越密的地方場強越大,則由圖可知P點的場強大于Q點的場強,B正確;帶電粒子在從P向Q運動的過程中電場力做負功,則帶電粒子的電勢能增大,故帶電粒子在P點時的電勢能較小,通過Q點時電勢能較大,C錯誤;由于帶電粒子在從P向Q運動的過程中電場力做負功,根據(jù)動能定理可知,帶電粒子在P點時的動能大于在Q點時的動能,D錯誤。
5-2 (2019·河南洛陽三模 35、)如圖所示,電阻不計的剛性?形金屬導(dǎo)軌放在光滑水平面上,導(dǎo)軌的兩條軌道之間的間距為L。一輕彈簧的左端與導(dǎo)軌的右邊中點相連,輕彈簧的右端固定在水平面某一位置處,彈簧和導(dǎo)軌的右邊垂直。質(zhì)量為m、長度為L、電阻為R的金屬桿ab可始終在導(dǎo)軌上滑動,滑動時與導(dǎo)軌的兩條軌道始終保持垂直(不計金屬桿ab和導(dǎo)軌之間的摩擦)。整個空間存在一垂直于水平面的勻強磁場(圖中未畫出),磁感應(yīng)強度的大小為B。開始時,輕彈簧處于原長狀態(tài),導(dǎo)軌和金屬桿ab都處于靜止狀態(tài)。在t=0時刻,有一位于導(dǎo)軌平面內(nèi)且與軌道平行的向右的拉力作用于金屬桿ab的中點上,使之從靜止開始在導(dǎo)軌上向右做加速度為a的勻加速直線運動。在t=t0時刻,撤 36、去拉力,此時輕彈簧的彈性勢能為最大值Ep。已知從t=0到t=t0的過程中,金屬桿ab上產(chǎn)生的焦耳熱為Q。試求:
(1)在t=t0時刻回路中的電流大??;
(2)在t=0到t=t0的過程中,作用在金屬桿ab上的拉力所做的功;
(3)外力撤去后的很長時間內(nèi),金屬桿ab上最多還能產(chǎn)生的電熱。
答案 (1) (2)Q+Ep+m(at0)2
(3)Ep+m(at0)2
解析 (1)設(shè)金屬桿ab在t=t0時刻的速度為v,則對金屬桿ab,有:v=at0
此時輕彈簧的彈性勢能為最大值,可知金屬導(dǎo)軌的速度為0,
故金屬桿ab產(chǎn)生的感應(yīng)電動勢E=BLv
回路中的感應(yīng)電流I=
解得:I=。
37、(2)在t=0到t=t0的過程中,對金屬桿ab、導(dǎo)軌和輕彈簧組成的系統(tǒng),由能量守恒可知,拉力所做的功轉(zhuǎn)化為金屬桿的動能、金屬桿ab產(chǎn)生的焦耳熱、輕彈簧的彈性勢能,由此可得:W=Q+Ep+mv2
解得:W=Q+Ep+m(at0)2。
(3)外力撤去后的很長時間后,金屬桿和導(dǎo)軌都靜止不動,輕彈簧處于原長,輕彈簧的彈性勢能為0,即金屬棒ab的動能與輕彈簧的彈性勢能全部轉(zhuǎn)化為ab上產(chǎn)生的焦耳熱,設(shè)金屬桿ab上最多還能產(chǎn)生的電熱為Q′,
由能量守恒定律得:Q′=Ep+mv2
解得:Q′=Ep+m(at0)2。
命題角度3 動量觀點在電磁學(xué)中的應(yīng)用
例6 (2018·天津高考)真空管道超高速 38、列車的動力系統(tǒng)是一種將電能直接轉(zhuǎn)換成平動動能的裝置。圖1是某種動力系統(tǒng)的簡化模型,圖中粗實線表示固定在水平面上間距為l的兩條平行光滑金屬導(dǎo)軌,電阻忽略不計,ab和cd是兩根與導(dǎo)軌垂直、長度均為l、電阻均為R的金屬棒,通過絕緣材料固定在列車底部,并與導(dǎo)軌良好接觸,其間距也為l,列車的總質(zhì)量為m。列車啟動前,ab、cd處于磁感應(yīng)強度為B的勻強磁場中,磁場方向垂直于導(dǎo)軌平面向下,如圖1所示,為使列車啟動,需在M、N間連接電動勢為E的直流電源,電源內(nèi)阻及導(dǎo)線電阻忽略不計,列車啟動后電源自動關(guān)閉。
(1)要使列車向右運行,啟動時圖1中M、N哪個接電源正極,并簡要說明理由;
(2)求剛接通電源 39、時列車加速度a的大小;
(3)列車減速時,需在前方設(shè)置如圖2所示的一系列磁感應(yīng)強度為B的勻強磁場區(qū)域,磁場寬度和相鄰磁場間距均大于l。若某時刻列車的速度為v0,此時ab、cd均在無磁場區(qū)域,試討論:要使列車停下來,前方至少需要多少塊這樣的有界磁場?
解析 (1)列車要向右運動,安培力方向應(yīng)向右,根據(jù)左手定則,接通電源后,金屬棒中電流方向由a到b,由c到d,故M接電源正極。
(2)由題意,啟動時ab、cd并聯(lián),電阻均為R,由并聯(lián)電路知ab、cd中電流均為I=①
每根金屬棒受到的安培力F0=BIl②
設(shè)兩根金屬棒所受安培力之和為F,有F=2F0③
根據(jù)牛頓第二定律有F=ma?、?
聯(lián)立 40、①②③④式得a=?、?
(3)設(shè)列車減速時,cd進入磁場后經(jīng)Δt時間ab恰好進入磁場,此過程中穿過兩金屬棒與導(dǎo)軌所圍回路的磁通量的變化量為ΔΦ,平均感應(yīng)電動勢為E1,由法拉第電磁感應(yīng)定律有E1=?、?
其中ΔΦ=Bl2 ⑦
設(shè)回路中平均電流為I′,由閉合電路歐姆定律有
I′= ⑧
設(shè)cd受到的平均安培力為F′,有F′=BI′l ⑨
以向右為正方向,設(shè)Δt時間內(nèi)cd受安培力沖量為I沖,有I沖=-F′Δt?、?
同理可知,回路出磁場時ab受安培力沖量仍為上述值,設(shè)回路進出一塊有界磁場區(qū)域安培力沖量為I0,有
I0=2I沖 ?
設(shè)列車停下來受到的總沖量為I總,由動量定理有
I總=0-m 41、v0 ?
聯(lián)立⑥⑦⑧⑨⑩??式得= ?
討論:若恰好為整數(shù),設(shè)其為n,則需設(shè)置n塊有界磁場;若不是整數(shù),設(shè)的整數(shù)部分為N,則需設(shè)置N+1塊有界磁場。
答案 (1)M接電源正極,理由見解析
(2)
(3)見解析
應(yīng)用動量定理解答電磁感應(yīng)問題的關(guān)鍵是:能否從速度和位移聯(lián)想到=n,=,q=·Δt,-BL·Δt=m·Δv。其實不難發(fā)現(xiàn),問題的核心是電荷量q,它一方面可以聯(lián)系到平均感應(yīng)電動勢,繼而到磁通量的變化ΔΦ,再到滑行距離;另一方面又可聯(lián)系到安培力,繼而通過動量定理聯(lián)系到速度,最終可以作為橋梁把滑行距離和速度這兩個物理量聯(lián)系起來。能用電荷量q把幾個規(guī)律一個個串聯(lián)起來,問題就解決了。 42、
在電磁感應(yīng)綜合問題中,若以等寬雙桿在磁場中的運動作為命題背景,由于回路中為同一電流,兩桿所受安培力等大反向,系統(tǒng)合力為零,則可應(yīng)用動量守恒定律方便快捷地求出桿的速度。另外,也可把雙桿問題當(dāng)成碰撞問題的變形拓展,可以對系統(tǒng)同時應(yīng)用動量守恒定律和能量守恒定律。
備課記錄:
43、
6-1 (2019·北京房山區(qū)二模)A、B是兩種放射性元素的原子核,原來都靜止在同一勻強磁場中,其中一個放出α粒子,另一個放出β粒子,運動方向都與磁場方向垂直。圖中a、b與c、d分別表示各粒子的運動軌跡,下列說法中正確的是( )
A.磁場方向一定垂直紙面向里
B.A放出的是α粒子,B放出的是β粒子
C.a(chǎn)為α粒子運動軌跡,d為β粒子運動軌跡
D.a(chǎn)軌跡中粒子比b軌跡中的粒子動量大
答案 B
解析 粒子在磁場中做勻速圓周運動,由于α粒子和β粒子的速度方向未知,不能判斷磁場的方向,A錯誤;放射性元素 44、的原子核放出α粒子時,α粒子與反沖核的速度方向相反,電性相同,則兩個粒子受到的洛倫茲力方向相反,兩個粒子的軌跡應(yīng)為外切圓,而放射性元素的原子核放出β粒子時,β粒子與反沖核的速度方向相反,電性相反,則兩個粒子受到的洛倫茲力方向相同,兩個粒子的軌跡應(yīng)為內(nèi)切圓,故A放出的是α粒子,B放出的是β粒子,B正確;放射性元素的原子核放出粒子時,兩帶電粒子的總動量守恒,故a軌跡對應(yīng)的粒子與b軌跡對應(yīng)的粒子動量大小相等,方向相反,由軌跡半徑公式r=可得r=,軌跡半徑與動量成正比,與電荷量成反比,而α粒子和β粒子的電荷量比反沖核的電荷量小,則α粒子和β粒子的軌跡半徑比反沖核的軌跡半徑都大,故b為α粒子的運動軌跡, 45、c為β粒子的運動軌跡,C、D錯誤。
6-2 (2019·浙江省溫州九校聯(lián)考)如圖甲所示,兩條相互平行的光滑金屬導(dǎo)軌,相距l(xiāng)=0.2 m,左側(cè)軌道的傾斜角θ=30°,右側(cè)軌道為圓弧線,軌道端點間接有電阻R=1.5 Ω,軌道中間部分水平,在MP、NQ間有寬度為d=0.8 m、方向豎直向下的勻強磁場,磁感應(yīng)強度B隨時間變化的關(guān)系如圖乙所示。一質(zhì)量為m=10 g、導(dǎo)軌間電阻為r=1.0 Ω的導(dǎo)體棒a從t=0時刻無初速釋放,初始位置與水平軌道間的高度差H=0.8 m。另一與a棒完全相同的導(dǎo)體棒b靜置于磁場外的水平軌道上,靠近磁場左邊界PM。a棒下滑后平滑進入水平軌道(轉(zhuǎn)角處無機械能損失),并與b棒發(fā)生 46、碰撞而粘合在一起,此后作為一個整體運動。導(dǎo)體棒始終與導(dǎo)軌垂直并接觸良好,軌道的電阻和電感不計。求:
(1)導(dǎo)體棒進入磁場前,流過R的電流大??;
(2)導(dǎo)體棒剛進入磁場瞬間受到的安培力大??;
(3)導(dǎo)體棒最終靜止的位置離PM的距離;
(4)全過程電阻R上產(chǎn)生的焦耳熱。
答案 (1)0.1 A (2)0.04 N (3)0.4 m (4)0.042 J
解析 (1)由法拉第電磁感應(yīng)定律可得E1=dl
由圖乙,得= T/s=1.25 T/s
由閉合電路歐姆定律得E1=I1
聯(lián)立解得I1=0.1 A。
(2)設(shè)a棒滑到底端時的速度為v0,由動能定理得
mgH=mv
設(shè)a棒與 47、b棒發(fā)生完全非彈性碰撞后的速度為v,由動量守恒定律得mv0=2mv
由于a棒下滑時間t==0.8 s
故兩棒碰撞后磁場的磁感應(yīng)強度不再變化,電動勢大小為E2=Blv
安培力大小為F=BI2l
又E2=I2
聯(lián)立解得F=0.04 N。
(3)導(dǎo)體棒直到靜止,由動量定理有
-Bl·Δt=0-2mv
又q=·Δt
q==
其中s為導(dǎo)體棒在水平軌道上滑過的路程
聯(lián)立解得s=2 m
所以導(dǎo)體棒最終靜止的位置離PM的距離為0.4 m。
(4)滑入磁場前,有QR1=IRt=0.012 J
碰撞過程損失的機械能為ΔE=mv-·2mv2
由能量守恒定律知a、b棒碰撞后回路中產(chǎn)生的總 48、焦耳熱為Q=mgH-ΔE
電阻R上產(chǎn)生的焦耳熱為QR2=Q=0.03 J
全過程電阻R上產(chǎn)生的焦耳熱為
QR=QR1+QR2=0.042 J。
閱卷現(xiàn)場 動量守恒定律應(yīng)用錯誤
例7 (2019·吉林省長春市二模)(12分)如圖所示,一質(zhì)量為m2=0.4 kg的平頂小車靜止在光滑的水平軌道上。質(zhì)量為m1=0.39 kg的小物塊(可視為質(zhì)點)靜止在車頂?shù)淖蠖?。一質(zhì)量為m0=0.01 kg的子彈以水平速度v0=200 m/s射中物塊左端并留在物塊中,子彈與物塊的作用時間極短。最終物塊相對地面以4 m/s的速度滑離小車,物塊與車頂面的動摩擦因數(shù)μ=0.5,取重力加速度g=10 m/s2。 49、求:
(1)子彈射入物塊過程中與物塊共速時的速度大小;
(2)小車的長度。
正解 (1)子彈與物塊相互作用過程動量守恒,設(shè)共速時的速度為v1
有:m0v0=(m0+m1)v1(2分)
解得:v1=5 m/s。(2分)
(2)設(shè)物塊滑離小車時的速度為v2,此時小車的速度為v3,三個物體組成的系統(tǒng)動量守恒:
(m0+m1)v1=(m0+m1)v2+m2v3(3分)
設(shè)小車的長度為L,由能量守恒定律可得:
μ(m0+m1)gL=(m0+m1)v-(m0+m1)v-m2v(3分)
解得:L=0.8 m。(2分)
答案 (1)5 m/s (2)0.8 m
錯解 (1)子彈與物 50、塊相互作用過程子彈、物塊與小車組成的系統(tǒng)動量守恒,設(shè)共速時的速度為v1
有:m0v0=(m0+m1+m2)v1(扣2分)
解得:v1=2.5 m/s。(扣2分)
(2)設(shè)小車的長度為L,由能量守恒定律可得:
μ(m0+m1)gL=m0v2-(m0+m1+m2)v(扣6分)
解得:L=98.75 m。(扣2分)
答案 (1)2.5 m/s (2)98.75 m
本題是典型的三體二次作用,子彈射入小物塊的過程,小車的速度沒有發(fā)生變化,子彈射入小物塊后,子彈與小物塊可看做一個整體,再與小車發(fā)生作用。子彈射入小物塊的過程,要損失一部分機械能,子彈、小物塊整體與小車作用的過程中,系統(tǒng)動 51、量守恒,機械能不守恒,第(2)問只涉及子彈、小物塊整體與小車作用的過程,且物塊最后滑離小車,與小車不共速,所以進行運動過程分析,將運動過程合理分段很有必要。
專題作業(yè)
1. (2019·遼寧葫蘆島一模)我國女子短道速滑隊在2013年世錦賽上實現(xiàn)女子3000 m接力三連冠。觀察發(fā)現(xiàn),“接棒”的運動員甲提前站在“交棒”的運動員乙前面,并且開始向前滑行,待乙追上甲時,乙猛推甲一把,使甲獲得更大的速度向前沖出。在乙推甲的過程中,忽略運動員與冰面間在水平方向上的相互作用,則( )
A.甲對乙的沖量一定等于乙對甲的沖量
B.甲、乙的動量變化一定大小相等方向相反
C.甲的動能增加量一定等于乙 52、的動能減少量
D.甲對乙做多少負功,乙對甲就一定做多少正功
答案 B
解析 因為沖量是矢量,甲對乙的作用力與乙對甲的作用力大小相等方向相反,故甲對乙的沖量與乙對甲的沖量大小相等方向相反,A錯誤;甲、乙作用過程中,甲、乙組成的系統(tǒng)所受合外力為0,根據(jù)動量定理可知,甲、乙動量變化之和為0,故甲、乙的動量變化一定大小相等方向相反,B正確;在相互作用的時間內(nèi),甲、乙的位移大小不相同,故相互作用力做功的大小不相等,根據(jù)動能定理可知,動能變化量大小不相等,C、D錯誤。
2. (2020·江蘇省漣水中學(xué)高三月考)如圖所示,虛線代表電場中的三個等勢面,實線為一帶電粒子僅在電場力作用下的運動軌跡,P、Q 53、是這條軌跡上的兩點,下列說法中正確的是( )
A.粒子帶負電
B.粒子在Q點時的加速度較P點大
C.粒子在P點時的動能較Q點大
D.粒子在P點時的電勢能較Q點大
答案 D
解析 因為電場線和等勢面垂直,且由高電勢指向低電勢,所以在P點的電場強度方向如圖所示,因為帶電粒子受到的電場力和電場強度共線,且指向曲線的內(nèi)側(cè),所以粒子在P點受到的電場力和電場強度方向相同,則粒子帶正電,故A錯誤;因為Q點所在處的等勢面比P點疏,所以電場強度比P點小,受到的電場力比P點小,根據(jù)牛頓第二定律可知,粒子在Q點的加速度小于P點,故B錯誤;根據(jù)Ep=qφ,P點的電勢大于Q點,粒子帶正電,可知粒子在P 54、點的電勢能大于Q點,根據(jù)能量守恒定律可知,粒子在P點的動能小于Q點,故C錯誤,D正確。
3. (2019·四川資陽二診)A、B兩小球在光滑水平面上沿同一直線運動,B球在前,A球在后。mA=1 kg,mB=2 kg。經(jīng)過一段時間,A、B發(fā)生正碰,碰撞時間極短,碰撞前、后兩球的位移—時間圖象如圖所示,根據(jù)以上信息可知碰撞類型屬于( )
A.彈性碰撞
B.非彈性碰撞
C.完全非彈性碰撞
D.條件不足,無法判斷
答案 A
解析 由圖可知,A球碰前速度vA=6 m/s,碰后速度vA′=2 m/s;B球碰前速度為vB=3 m/s,碰后速度為vB′=5 m/s。根據(jù)題給數(shù)據(jù)可知,碰撞 55、過程系統(tǒng)動量守恒。碰前系統(tǒng)的總動能為mAv+mBv=27 J,碰后的總動能為mAvA′2+mBvB′2=27 J,則系統(tǒng)碰撞過程機械能也守恒,所以屬于彈性碰撞,A正確,B、C、D錯誤。
4. (2019·云南二模)如圖所示,木塊靜止在光滑水平面上,兩顆不同的子彈A、B從木塊兩側(cè)同時射入木塊,最終都停在木塊內(nèi),這一過程中木塊始終保持靜止。若子彈A射入的深度大于子彈B射入的深度,則( )
A.子彈A的質(zhì)量一定比子彈B的質(zhì)量大
B.入射過程中子彈A受到的阻力比子彈B受到的阻力大
C.子彈A在木塊中運動的時間比子彈B在木塊中運動的時間長
D.子彈A射入木塊時的初動能一定比子彈B射入木塊 56、時的初動能大
答案 D
解析 由于木塊始終保持靜止狀態(tài),可知整個過程中,兩子彈對木塊的推力大小時刻相等,則兩子彈所受的阻力大小時刻相等,且作用時間也一定相等。設(shè)全過程平均阻力為f,根據(jù)動能定理得,對子彈A:-fdA=0-EkA,得EkA=fdA,對子彈B:-fdB=0-EkB,得EkB=fdB,由于dA>dB,則有子彈入射時的初動能EkA>EkB,故B、C錯誤,D正確;兩子彈和木塊組成的系統(tǒng)動量守恒,則有=,而EkA>EkB,則得到mA<mB,故A錯誤。
5. (2020·廣西南寧二中、柳州高中二校高三聯(lián)考)如圖所示,一半徑為R=0.4 m的固定光滑圓弧軌道AB位于豎直平面內(nèi),軌道下端與 57、一光滑水平直軌道相切于B點,一小球M從距圓弧軌道最高點A高度為h=0.4 m處由靜止釋放,并恰好沿切線進入圓弧軌道,當(dāng)滑到水平面上后與靜止在水平面上且前端帶有輕彈簧的小球N碰撞,M、N質(zhì)量均為m=1 kg,g=10 m/s2。下列說法正確的是( )
A.小球M在圓弧軌道內(nèi)運動過程中所受合外力方向始終指向軌道圓心
B.輕彈簧被壓縮至最短時,M和N的速度大小都是2 m/s
C.輕彈簧被壓縮的過程中,M、N的總動量和總動能都保持不變
D.輕彈簧被壓縮過程中的最大彈性勢能為6 J
答案 B
解析 小球M在圓弧軌道內(nèi)運動過程中受豎直向下的重力、指向圓心的支持力,做變速圓周運動,合外力方 58、向除在B點外都不指向軌道圓心,故A錯誤;小球M從開始到滑到B的過程,由機械能守恒定律得:mg(h+R)=mv,代入數(shù)據(jù)解得:vB=4 m/s,輕彈簧被壓縮至最短時兩球速度相等,系統(tǒng)動量守恒,以向右為正方向,由動量守恒定律得:mvB=2mv,代入數(shù)據(jù)解得:v=2 m/s,故B正確;輕彈簧被壓縮的過程中,由動量守恒定律知M、N的總動量不變,根據(jù)機械能守恒定律知彈性勢能增大,所以M、N的總動能減少,故C錯誤;輕彈簧被壓縮至最短時,彈性勢能最大,根據(jù)機械能守恒定律得:mv=·2mv2+Epm,代入數(shù)據(jù)解得:Epm=4 J,故D錯誤。
6. (2019·福建省福州市檢測)如圖所示,傾角為θ=30°的粗 59、糙絕緣斜面固定在水平面上,在斜面的底端A和頂端B分別固定等量的同種正電荷。質(zhì)量為m、帶電荷量為+q的物塊從斜面上的M點由靜止釋放,物塊向下運動的過程中經(jīng)過斜面中點O時速度達到最大值v,運動的最低點為N(圖中沒有標出),則下列說法正確的是( )
A.物塊向下運動的過程中加速度先增大后減小
B.物塊和斜面間的動摩擦因數(shù)μ=
C.物塊運動的最低點N到O點的距離小于M點到O點的距離
D.物塊的釋放點M與O點間的電勢差為
答案 D
解析 根據(jù)點電荷的電場特點和電場的疊加原理可知,沿斜面從A到B電場強度先減小后增大,中點O的電場強度為零。設(shè)物塊下滑過程中的加速度為a,根據(jù)牛頓第二定律有m 60、gsinθ-μmgcosθ+qE=ma,物塊下滑的過程中電場力qE先沿斜面向下逐漸減小后沿斜面向上逐漸增大,所以物塊的加速度大小先減小后增大,A錯誤;物塊在斜面上運動到O點時的速度最大,則可知此時物塊的加速度為零,又電場強度為零,有mgsinθ-μmgcosθ=0,所以物塊和斜面間的動摩擦因數(shù)μ=tanθ=,B錯誤;由于運動過程中mgsinθ-μmgcosθ=0,所以物塊從M點運動到N點的過程中受到的合外力為qE,因此最低點N與釋放點M關(guān)于O點對稱,C錯誤;根據(jù)動能定理有qUMO+mgxMOsinθ-μmgxMOcosθ=mv2,且mgsinθ=μmgcosθ,所以物塊的釋放點M與O點間的電勢 61、差UMO=,D正確。
7. (2019·福建省泉州市檢測)(多選)一質(zhì)量為m、電荷量為q的帶正電小滑塊,從傾角為θ的光滑絕緣斜面上的A點由靜止下滑,經(jīng)時間t后立即加上沿斜面向上的勻強電場,再經(jīng)時間t滑塊恰好過A點。重力加速度大小為g,則( )
A.勻強電場的電場強度大小為
B.滑塊過A點時的速度大小為2gtsinθ
C.滑塊從A點到最低點過程中重力勢能減少了mg2t2sin2θ
D.滑塊從最低點到A點的過程中電勢能減少了2mg2t2sin2θ
答案 AB
解析 未加電場時,小滑塊的加速度大小為a=gsinθ,經(jīng)時間t后速度大小為v1=at=gtsinθ,位移大小為x=at2 62、=gt2sinθ;加上電場后,則加速度大小為a′=-gsinθ,再經(jīng)時間t后,根據(jù)勻變速運動規(guī)律有x=-v1t+a′t2,聯(lián)立解得a′=3gsinθ,E=,A正確;滑塊過A點時的速度大小為v2=-v1+a′t=-gtsinθ+3gtsinθ=2gtsinθ,B正確;從A點到最低點,位移大小為x總=at2+=gt2sinθ,所以重力勢能減小量ΔEp=mgx總sinθ=mg2t2sin2θ,C錯誤;從最低點到A點根據(jù)動能定理W電-mgx總sinθ=mv-0,解得W電=mg2t2sin2θ,所以電勢能減少了ΔEp′=W電=mg2t2sin2θ,D錯誤。
8. (2019·陜西省西安市檢測)如圖所示 63、,間距為L、電阻不計的足夠長平行光滑金屬導(dǎo)軌水平放置,導(dǎo)軌左端有一阻值為R的電阻,一質(zhì)量為m、電阻也為R的金屬棒橫跨在導(dǎo)軌上,棒與導(dǎo)軌接觸良好。整個裝置處于豎直向上、磁感應(yīng)強度為B的勻強磁場中,金屬棒以初速度v0沿導(dǎo)軌向右運動,在金屬棒整個運動過程中,下列說法正確的是( )
A.金屬棒b端電勢比a端高
B.金屬棒ab克服安培力做的功等于電阻R上產(chǎn)生的焦耳熱
C.金屬棒ab運動的位移為
D.金屬棒ab運動的位移為
答案 D
解析 金屬棒ab相當(dāng)于電源,由右手定則可知,金屬棒ab上電流的方向是b→a,說明b端電勢比a端低,A錯誤;由功能關(guān)系知金屬棒ab克服安培力做的功等于電阻R與 64、金屬棒上產(chǎn)生的焦耳熱之和,B錯誤;由動量定理得-BLΔt=0-mv0,由法拉第電磁感應(yīng)定律得E=B,由閉合電路的歐姆定律得E=·2R,聯(lián)立解得金屬棒的位移x=,C錯誤,D正確。
9.(2019·云南省昆明市模擬)(多選)如圖所示,MN、PQ為足夠長的平行金屬導(dǎo)軌,導(dǎo)軌間距為L,導(dǎo)軌平面與水平面間夾角為θ=37°,N、Q間連接一個阻值為R的電阻,勻強磁場垂直于導(dǎo)軌平面向上,磁感應(yīng)強度大小為B。將一根質(zhì)量為m的金屬棒放在兩導(dǎo)軌的ab位置,現(xiàn)由靜止釋放金屬棒,金屬棒沿導(dǎo)軌下滑過程中始終與兩導(dǎo)軌垂直,且與導(dǎo)軌接觸良好,當(dāng)金屬棒滑行至cd位置,速度開始保持不變。已知cd與ab之間的距離為s,金屬棒與導(dǎo) 65、軌間的動摩擦因數(shù)為μ=0.5,金屬棒及導(dǎo)軌的電阻不計,重力加速度為g,sin37°=0.6,cos37°=0.8。則( )
A.金屬棒沿導(dǎo)軌剛開始下滑時的加速度大小為g
B.金屬棒到達cd處的速度大小為
C.金屬棒由ab處運動到cd處所用的時間為t=+
D.金屬棒由ab處運動到cd處所用的時間為t=+
答案 BC
解析 金屬棒沿導(dǎo)軌剛開始下滑時,有mgsin37°-μmgcos37°=ma,解得a=,A錯誤;金屬棒到達cd處,速度達到最大,金屬棒所受的合外力為0,故有mgsin37°-μmgcos37°-F安=0,其中F安=BIL=BL,聯(lián)立解得vm=,B正確;金屬棒由ab處 66、運動到cd處,由動量定理得(mgsin37°-μmgcos37°-BIL)Δt=mΔv,其中I=,整理式子并兩邊求和得∑(mgsin37°-μmgcos37°)Δt-∑Δt=∑mΔv,則有(mgsin37°-μmgcos37°)t-=mvm,解得t=+,C正確,D錯誤。
10.(2019·河北唐山二模)如圖所示,有兩光滑平行金屬導(dǎo)軌PQR、DEF,PQ、DE部分為半徑為r的圓弧導(dǎo)軌,QR、EF部分為水平導(dǎo)軌,圓弧部分與水平部分相切,水平部分處于磁感應(yīng)強度為B、方向豎直向下的勻強磁場中,導(dǎo)軌間距為L。兩金屬桿a、b的質(zhì)量分別為m、3m,電阻均為R。開始時,桿b與兩水平軌道垂直且靜止于磁場中,a桿從圓弧軌道上端由靜止釋放,釋放位置與水平軌道的高度差為r,求:
(1)a桿運動到圓弧末端時對軌道的壓力;
(2)b桿的最大加速度和最大速度。
答案 (1)3mg (2)
解析 (1)對a沿圓弧軌道下滑過程中,根據(jù)動能定理可得:mgr=mv,
對a在圓弧末端,根據(jù)牛頓第二定律可得:
FN-mg=m,解得:FN=3mg,
根據(jù)牛頓第三定律可得,a桿運動到圓弧末端時對軌道的壓力為3
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 北師大版數(shù)學(xué)二年級下冊《買洗衣機》課件PPT版
- 小學(xué)生文明禮儀班會課件
- 質(zhì)量管理軟件質(zhì)量管理與質(zhì)量保證
- 勞務(wù)派遣與專業(yè)外包用工風(fēng)險防范
- 動物個體發(fā)育與演化課件
- 課外練習(xí)2_長方形和正方形的面積
- 合同法基本原理( 44頁)
- 醫(yī)師電子化注冊系統(tǒng)培訓(xùn)(2018醫(yī)師個人版)(PPT40頁)
- 百度汽車營銷
- 斗破蒼穹人物介紹PPT課件
- 養(yǎng)老地產(chǎn)解析
- 字詞句運用 (3)(精品)
- 大型財稅講座產(chǎn)說會流程
- 涂料銷售渠道開發(fā)
- 房地產(chǎn)業(yè)務(wù)流程管理_