《2022年高三數(shù)學(xué)第五次月考試題 文(V)》由會員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)第五次月考試題 文(V)(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年高三數(shù)學(xué)第五次月考試題 文(V)
本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,共150分,考試用時120分鐘。答卷前,考生務(wù)必將自己的姓名、準考號填寫在答題卡上,并在規(guī)定位置粘貼考試用條形碼。答卷時,考生務(wù)必將答案涂寫在答題卡上,答在試卷上的無效。考試結(jié)束后,將本試卷和答題卡一并交回。
注意事項:
1.每小題選出答案后,用2B鉛筆將答題卡上對應(yīng)題目的答案標號涂黑。如需改動,用橡皮擦干凈后,再選涂其他答案標號。
3.本卷共8小題,每小題5分,共40分。
參考公式:
·如果事件,互斥,那么
·如果事件,相互獨立,那么
·柱體的體積公式
2、
·錐體的體積公式
其中表示柱(錐)體的底面面積
表示柱(錐)體的高
一.選擇題:在每小題給出的四個選項中,只有一項是符合題目要求的.
(1)設(shè)全集為,集合,,則
(A)
(B)
(C)
(D)
(2)設(shè)是公比為的等比數(shù)列,則“”是“為遞減數(shù)列”的
(A)充分而不必要條件
(B)必要而不充分條件
(C)充分必要條件
(D)既不充分也不必要條件
開始
輸出K,S
結(jié)束
是
否
(3)閱讀右邊的程序框圖,運行相應(yīng)的程序,
則輸出的和值分別為
(A), (B),
(C), (D),
(4)
3、設(shè),,, 則
(A)
(B)
(C)
(D)
(5)已知雙曲線:的焦距為,
點在的漸近線上,則的方程
為
(A) (B) (C) (D)
(6)若將函數(shù)的圖象向右平移個單位,所得圖象關(guān)于軸對稱,
則的最小正值是
(A) (B) (C) (D)
(7)若,,,則下列不等式中
①;②;③;④.
對一切滿足條件的,恒成立的序號是
(A)①② (B)①③ (C)①③④ (D)②③④
(8)在邊長為的正三角形中,設(shè),,若,則的值為
(A) (B) (C) (D)
第Ⅱ卷
注意事項:
4、 1.用黑色墨水的鋼筆或簽字筆將答案寫在答題卡上。
2.本卷共12小題,共110分。
二、填空題:本大題共6小題,每小題5分,共30分.
(9)某校選修乒乓球課程的學(xué)生中,高一年級有名,高二年級有名現(xiàn)用分層抽樣的方法在這名學(xué)生中抽取一個樣本,已知在高一年級的學(xué)生中抽取了名,則在高二年級的學(xué)生中應(yīng)抽取的人數(shù)為 .
(10)是虛數(shù)單位,復(fù)數(shù) .
(11)一空間幾何體的三視圖如右圖所示,該幾何體的體積
為,則正視圖與側(cè)視圖中的值為 .
(12)函數(shù)的單調(diào)遞減區(qū)間為 .
(13)過圓外
5、一點作圓的切線 (為切點),
再作割線依次交圓于,.若,
,,則 .
(14)已知函數(shù)是定義在上的奇函數(shù),當(dāng)時,
.若,,則實數(shù)的取值范圍為 .
三、解答題:本大題共6小題,共80分.解答應(yīng)寫出文字說明,證明過程或演算步驟.
(15)(本小題滿分13分)
某校書法興趣組有名男同學(xué),,和名女同學(xué),,,其年級情況如下表:
一年級
二年級
三年級
男同學(xué)
女同學(xué)
現(xiàn)從這名同學(xué)中隨機選出人參加書法比賽(每人被選到的可能性相同).
(Ⅰ)用表中字母列舉出所有可能的結(jié)果;
(Ⅱ)設(shè)為事件“選出的人來自
6、不同年級且性別相同”,求事件發(fā)生的概率.
(16)(本小題滿分13分)
設(shè)的內(nèi)角,,所對邊的長分別是,,,且,,.
(Ⅰ)求的值;
(Ⅱ)求的值.
(17)(本小題滿分13分)
如圖甲,在平面四邊形中,已知,,,,現(xiàn)將四邊形沿折起,使平面 平面(如圖乙),設(shè)點,分別為棱,的中點.
(Ⅰ)證明平面;
(Ⅱ)求與平面所成角的正弦值;
(Ⅲ)求二面角的余弦值.
(18)(本小題滿分13分)
已知橢圓:的焦距為,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)為橢圓的左焦點,為直線上任意一點,過
7、作的垂線交橢圓于點,.證明:平分線段(其中為坐標原點).
(19)(本小題滿分14分)
已知等差數(shù)列的公差為,前項和為,且,,成等比數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)令,求數(shù)列的前項和.
(20)(本小題滿分14分)
已知,函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,證明:方程在區(qū)間(2,)上有唯一解;
(Ⅲ)若存在均屬于區(qū)間[1,3]的且,使=,
證明:.
參考答案
一、選擇題:本題考查基本知識和基本運算.每小題5分,滿分40分.
(1) A
(2) D
(3) B
(4)C
(5) B
(6) C
(7) C
(8)D
二、
8、填空題:本題考查基本知識和基本運算.每小題5分,滿分30分.
(9)
(10)
(11)
(12)
(13)
(14)
(16)(本小題滿分13分)
(Ⅰ)解:因為,所以,…………1分
由余弦定理得, …………3分
所以由正弦定理可得. …………5分
因為,,所以,即. …………6分
(Ⅱ)解:由余弦定理得.…………8分
因為,所以. …………10分
故
. …………13分
(17)(本小題滿分13分)
(Ⅰ)證明
9、:在圖甲中由且
得 ,即
在圖乙中,因為平面平面,且平面平面=
所以⊥底面,所以⊥. …………2分
又,得⊥,且 …………3分
所以平面. …………4分
(Ⅱ)解法1:由、分別為、的中點
得//,又由(Ⅰ)知,平面,
所以⊥平面,垂足為點
則是與平面所成的角 …………6分
在圖甲中,由, 得,
設(shè)
則,,,…………8分
所以在中,
即與平面所成角的正弦值為. …………9分
解法2:如圖,以為坐標原點
10、,所在的直線為軸建立空間直角坐標系如下圖示,
設(shè),則,…………6分
可得,,,,,
所以,…………8分
設(shè)與平面所成的角為
由(Ⅰ)知 平面
所以
即 …………9分
(Ⅲ)由(Ⅱ)知⊥平面,
又因為平面, 平面,所以⊥,⊥,
所以為二面角的平面角 …………11分
在中,
所以
即所求二面角的余弦為. …………13分
(18)(本小題滿分13分)
(Ⅰ)解:由已知可得, …………2分
解得,, …………4分
所以橢圓的標準方程是. ……
11、……6分
(Ⅱ)證明:由(Ⅰ)可得,的坐標是,設(shè)點的坐標為,
則直線的斜率.
當(dāng)時,直線的斜率.直線的方程是.
當(dāng)時,直線的方程是,也符合的形式.…………8分
設(shè),,將直線的方程與橢圓的方程聯(lián)立,
消去,得,
其判別式.
所以,,
. …………10分
設(shè)為的中點,則點的坐標為.
所以直線的斜率,又直線的斜率,…………12分
所以點在直線上,因此平分線段. …………13分
(19)(本小題滿分14分)
(Ⅰ)解:因為,,,
由題意得,解得,所以. …………6分
(Ⅱ)解:由題意可知,
12、
.……8分
當(dāng)為偶數(shù)時,
. …………11分
當(dāng)為奇數(shù)時,
. …………14分
所以.(或)
(20)(本小題滿分14分)
(Ⅰ)解:函數(shù)的定義域 , …………2分
令得:,令得:…………4分
∴函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為…………5分
(注:檢驗的函數(shù)值異號的點選取并不唯一)
(Ⅲ)證明:由及(Ⅰ)的結(jié)論知, …………10分
從而在上的最大值為(或), …………11分
又由,,,知. …………12分
故,即. …………13分
從而. …………14分