《2022年高三數(shù)學總復習分類匯編 第三期 J單元 計數(shù)原理》由會員分享,可在線閱讀,更多相關《2022年高三數(shù)學總復習分類匯編 第三期 J單元 計數(shù)原理(2頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年高三數(shù)學總復習分類匯編 第三期 J單元 計數(shù)原理
目錄
J單元 計數(shù)原理 1
J1 基本計數(shù)原理 1
J2 排列、組合 1
J3 二項式定理 1
J4 單元綜合 1
J1 基本計數(shù)原理
【數(shù)學理卷·xx屆浙江省重點中學協(xié)作體高三第一次適應性測試(xx11)word版】17.設為正六邊形,一只青蛙開始在頂點處,它每次可隨意地跳到相鄰兩頂點之一。若在5次之內(nèi)跳到點,則停止跳動;若5次之內(nèi)不能到達點,則跳完5次也停止跳動,那么這只青蛙從
2、開始到停止,可能出現(xiàn)的不同跳法共 ▲ 種。
【知識點】基本計數(shù)原理 J1
【答案解析】26 解析:青蛙不能經(jīng)過跳1次、2次或4次到達D點.故青蛙的跳法只有下列兩種:(1)青蛙跳3次到達D點,有ABCD,AFED兩種跳法;
(2)青蛙一共跳5次后停止,那么,前3次的跳法一定不到達D,只能到達B或F,則共有AFEF,AFAF,ABAF,ABCB,ABAB,AFAB這6種跳法.隨后的兩次跳法各有四種,比如由F出發(fā)的有:FEF,F(xiàn)ED,F(xiàn)AF,F(xiàn)AB共四種.因此這5次跳法共有6×4=24種不同跳法.所以,一共有2+24=26種不同跳法.故答案為:26.
【思路點撥】由已知,我們分析得到青
3、蛙不能經(jīng)過跳1次、2次或4次到達D點??梢苑智嗤芴?次到達D點和跳5次后停止兩種情況分析計算。
J2 排列、組合
【數(shù)學理卷·xx屆湖南省師大附中高三上學期第二次月考(xx10)word版】13、將6位志愿者分成4組,其中兩組各2人,另兩組各1人,分赴4個不同的學校支教,則不同的分配方案共有 種(用數(shù)字作答);
【知識點】排列、組合及簡單計數(shù)問題.J2
【答案解析】 解析:根據(jù)題意,先將6人按2﹣2﹣1﹣1分成4組,有種分組方法,再對應分配到四個不同場館,有A44=24種方法,則共有45×24=1080種方法;
故答案為1080.
【思路點撥】
4、根據(jù)題意,先分組,再分配;先將6人按2﹣2﹣1﹣1分成4組,有種分組方法,再對應分配到四個不同場館,有A44種方法,進而由分步計數(shù)原理計算可得答案.
J3 二項式定理
【數(shù)學理卷·xx屆浙江省重點中學協(xié)作體高三第一次適應性測試(xx11)word版】5.將二項式的展開式按的降冪排列,若前三項系數(shù)成等差數(shù)列,則該展開式中的指數(shù)是整數(shù)的項共有( ▲ )個。
A.3 B.4 C.5 D.6
【知識點】二項式定理的展開式J3
【答案解析】A解析:展開式中前三項的系數(shù)分別為 ,由題意得,所以 或1(舍去)。展開式通項 ,所以當r=0,4,8時,x的指數(shù)是整數(shù),故有3個。
【思路點撥】根據(jù)二項式定理的展開式可求前三項的系數(shù),再由等差可求n,由二項式系數(shù)的性質(zhì)即可求出指數(shù)是整數(shù)的情況。
J4 單元綜合