影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2022年高考數(shù)學二輪專題復習 專題五 5.1 空間幾何體的三視圖、表面積與體積能力訓練 新人教A版

上傳人:xt****7 文檔編號:105336103 上傳時間:2022-06-11 格式:DOC 頁數(shù):8 大小:405.52KB
收藏 版權申訴 舉報 下載
2022年高考數(shù)學二輪專題復習 專題五 5.1 空間幾何體的三視圖、表面積與體積能力訓練 新人教A版_第1頁
第1頁 / 共8頁
2022年高考數(shù)學二輪專題復習 專題五 5.1 空間幾何體的三視圖、表面積與體積能力訓練 新人教A版_第2頁
第2頁 / 共8頁
2022年高考數(shù)學二輪專題復習 專題五 5.1 空間幾何體的三視圖、表面積與體積能力訓練 新人教A版_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學二輪專題復習 專題五 5.1 空間幾何體的三視圖、表面積與體積能力訓練 新人教A版》由會員分享,可在線閱讀,更多相關《2022年高考數(shù)學二輪專題復習 專題五 5.1 空間幾何體的三視圖、表面積與體積能力訓練 新人教A版(8頁珍藏版)》請在裝配圖網上搜索。

1、2022年高考數(shù)學二輪專題復習 專題五 5.1 空間幾何體的三視圖、表面積與體積能力訓練 新人教A版 一、選擇題(本大題共7小題,每小題5分,共35分) 1.把邊長為1的正方形ABCD沿對角線BD折起,形成的三棱錐A-BCD的正視圖與俯視圖如圖所示,則其側視圖的面積為(  )                  A. B. C. D. 2.(xx浙江嘉興教學測試(二),文2)一個幾何體的三視圖如圖所示,則該幾何體的體積為(  ) A.π B. C. D. 3.如圖,網格紙中的小正方形的邊長均為1,圖中粗線畫出的是一個幾何體的三視圖,則這個幾何體的表面積為(  ) A.+3

2、+4) B.+3+8) C.+8) D.+2+8) 4.(xx浙江溫州二適,文4)若某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是(  ) A.(18π-20) cm3 B.(24π-20) cm3 C.(18π-28) cm3 D.(24π-28) cm3 5.正三棱錐的高和底面邊長都等于6,則其外接球的表面積為(  ) A.64π B.32π C.16π D.8π 6.如圖,網格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的各條棱中,最長的棱的長度為(  ) A.6 B.6 C.4 D.4 7.某幾何體的三視圖如圖所示,則該幾何

3、體的表面積為(  ) A.54 B.60 C.66 D.72 二、填空題(本大題共4小題,每小題5分,共20分) 8.(xx浙江溫州三適應,文11)下面是某幾何體的三視圖(單位:cm),則該幾何體的表面積是    cm2,體積為    cm3.? 9.(xx浙江紹興教學質量檢查,文11)某幾何體的三視圖如圖所示,則該幾何體的最長棱長為    ,體積為    .? 10.(xx浙江臺州質檢)已知正方形ABCD的邊長為12,動點M(不在平面ABCD內)滿足MA⊥MB,則三棱錐A-BCM的體積的取值范圍為     .? 11.已知直三棱柱ABC-A1B1C1中,∠BAC=

4、90°,側面BCC1B1的面積為2,則直三棱柱ABC-A1B1C1外接球表面積的最小值為     .? 三、解答題(本大題共3小題,共45分.解答應寫出必要的文字說明、證明過程或演算步驟) 12.(本小題滿分14分) (xx陜西,文17)四面體ABCD及其三視圖如圖所示,平行于棱AD,BC的平面分別交四面體的棱AB,BD,DC,CA于點E,F,G,H. (1)求四面體ABCD的體積; (2)證明:四邊形EFGH是矩形. 13.(本小題滿分15分)(xx課標全國Ⅰ,文18) 如圖,四邊形ABCD為菱形,G為AC與B

5、D的交點,BE⊥平面ABCD. (1)證明:平面AEC⊥平面BED; (2)若∠ABC=120°,AE⊥EC,三棱錐E-ACD的體積為,求該三棱錐的側面積. 14.(本小題滿分16分)如圖,在Rt△ABC中,AB=BC=4,點E在線段AB上.過點E作EF∥BC交AC于點F,將△AEF沿EF折起到△PEF的位置(點A與P重合),使得∠PEB=30°. (1)求證:EF⊥PB; (2)試問:當點E在何處時,四棱錐P-EFCB的側面PEB的面積最大?并求此時四棱錐P-EFCB的體積. 參考答案

6、專題能力訓練11 空間幾何體的三視圖、 表面積與體積 1.D 解析:由正視圖與俯視圖可得三棱錐A-BCD的一個側面與底面垂直,其側視圖是直角三角形,且直角邊長均為,所以側視圖的面積為S=.故選D. 2.D 解析:由題中所給的三視圖可知,該幾何體為一半圓錐,底面直徑為2,半徑為1,高為1,體積V=·π·12·1=.故選D. 3.B 解析:根據(jù)三視圖可知該幾何體是底面為直角三角形的三棱錐,其表面積S=×3+×2×3++3+8).故選B. 4.D 解析:由題中所給的三視圖可知,該幾何體為一個圓柱中間挖去了一個上、下底面為正方形且底面邊長分別為4 cm和2 cm的棱臺,由三視圖可知,圓柱的底

7、面半徑為=2 cm,則該幾何體的體積為V=π·(2)2·3-(42++22)·3=(24π-28) cm3.故選D. 5.A 解析: 作PM⊥平面ABC于點M,則球心O在PM上,|PM|=6,連接AM,AO,則|OP|=|OA|=R.在Rt△OAM中,|OM|=6-R,|OA|=R,又|AB|=6,且△ABC為等邊三角形,故|AM|==2,則R2-(6-R)2=(2)2, 解得R=4, 所以球的表面積S=4πR2=64π. 6.B 解析: 如圖所示的正方體ABCD-A1B1C1D1的棱長為4.取B1B的中點G,即三棱錐G-CC1D1為滿足要求的幾何體,其中最長棱為D1G,D

8、1G==6. 7.B 解析:根據(jù)幾何體的三視圖可得該幾何體的直觀圖為如圖所示的ABC-DEF,故其表面積為S=S△DEF+S△ABC+S梯形ABED+S梯形CBEF+S矩形ACFD=×3×5+×3×4+×(5+2)×4+×(5+2)×5+3×5=60.故選B. 8.14+2 4 解析:由題中所給的三視圖知,對應的幾何體為如下圖所示的三棱錐P-ABC,PC⊥平面ABC,PC=2,底面△ABC中,AC=5,AB=4,BC=3,所以AC2=AB2+BC2.所以AB⊥BC.所以PB⊥AB.在直角三角形PCB中,PB=,所以該幾何體的表面積為×5×2+×3×2+×4×3+×4×=14+2,該

9、幾何體的體積為×4×3×2=4. 9. 解析:由題中所給的三視圖可知,該幾何體是一個三棱錐,底面三角形是底邊為2,高為1的等腰三角形,幾何體的高為2,有一側面與底面垂直,且該側面是等腰三角形(如圖).其最長的棱為PB=,體積為×2×1×2=. 10.(0,144] 解析:因為動點M(不在平面ABCD內)滿足MA⊥MB,所以動點M的軌跡是以AB的中點為球心,以6為半徑的一個球面去除與平面ABCD相交的部分.因VA-BCM=VM-ABC=×S△ABC×h≤×6=144,故三棱錐A-BCM的體積的取值范圍為(0,144]. 11.4π 解析:如圖所示,設BC,B1C1的中點分別為E,F,則

10、知三棱柱ABC-A1B1C1外接球的球心為線段EF的中點O,且BC·EF=2. 設外接球的半徑為R,則R2=BE2+OE2=×2BC·EF=1, 當且僅當BC=EF=時取等號.故直三棱柱ABC-A1B1C1外接球表面積的最小值為4π×12=4π. 12. (1)解:由該四面體的三視圖可知,BD⊥DC,BD⊥AD,AD⊥DC,BD=DC=2,AD=1, ∴AD⊥平面BDC. ∴四面體體積V=×2×2×1=. (2)證明:∵BC∥平面EFGH, 平面EFGH∩平面BDC=FG, 平面EFGH∩平面ABC=EH, ∴BC∥FG,BC∥EH.∴FG∥EH. 同理EF∥AD

11、,HG∥AD,∴EF∥HG. ∴四邊形EFGH是平行四邊形. 又∵AD⊥平面BDC,∴AD⊥BC.∴EF⊥FG. ∴四邊形EFGH是矩形. 13.(1)證明:因為四邊形ABCD為菱形,所以AC⊥BD. 因為BE⊥平面ABCD, 所以AC⊥BE.故AC⊥平面BED. 又AC?平面AEC,所以平面AEC⊥平面BED. (2)解:設AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=x,GB=GD=. 因為AE⊥EC,所以在Rt△AEC中,可得EG=x. 由BE⊥平面ABCD,知△EBG為直角三角形,可得BE=x. 由已知得,三棱錐E-ACD的體積 VE-ACD

12、=AC·GD·BE=x3=. 故x=2. 從而可得AE=EC=ED=. 所以△EAC的面積為3,△EAD的面積與△ECD的面積均為. 故三棱錐E-ACD的側面積為3+2. 14.(1)證明:∵EF∥BC,且BC⊥AB, ∴EF⊥AB,即EF⊥BE,EF⊥PE.又BE∩PE=E, ∴EF⊥平面PBE.又PB?平面PBE, ∴EF⊥PB. (2)解:設BE=x,PE=y,則x+y=4.∴S△PEB=BE·PE·sin∠PEB=xy≤=1, 當且僅當x=y=2時,S△PEB的面積最大.此時,BE=PE=2. 由(1)知EF⊥平面PBE, ∴平面PBE⊥平面EFCB. 在平面PBE中,作PO⊥BE于O,則PO⊥平面EFCB. 即PO為四棱錐P-EFCB的高. 又PO=PE·sin 30°=2×=1,SEFCB=×(2+4)×2=6,∴VP-BCFE=×6×1=2.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!