影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2022年高考數(shù)學 高頻考點、提分密碼 第四部分 平面向量 新人教版

上傳人:xt****7 文檔編號:105417109 上傳時間:2022-06-12 格式:DOC 頁數(shù):3 大小:26.02KB
收藏 版權申訴 舉報 下載
2022年高考數(shù)學 高頻考點、提分密碼 第四部分 平面向量 新人教版_第1頁
第1頁 / 共3頁
2022年高考數(shù)學 高頻考點、提分密碼 第四部分 平面向量 新人教版_第2頁
第2頁 / 共3頁
2022年高考數(shù)學 高頻考點、提分密碼 第四部分 平面向量 新人教版_第3頁
第3頁 / 共3頁

最后一頁預覽完了!喜歡就下載吧,查找使用更方便

9.9 積分

下載資源

資源描述:

《2022年高考數(shù)學 高頻考點、提分密碼 第四部分 平面向量 新人教版》由會員分享,可在線閱讀,更多相關《2022年高考數(shù)學 高頻考點、提分密碼 第四部分 平面向量 新人教版(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學 高頻考點、提分密碼 第四部分 平面向量 新人教版 一、知識方法與技巧 ㈠向量的概念及運算 1、向量的有關概念 向量—既有大小又有方向的量 向量的長度(模)—向量的大小 平行向量(共線向量)—方向相同或相反的非零向量,并且規(guī)定零向量與任何向量均平行. 相等向量—長度相等且方向相同的向量。 2、向量運算 ⑴加法運算 加法法則:①三角形法則;②平行四邊形法則 平面向量的坐標運算:設=(x1,y1),=(x2,y2),則+=(x1+x2,y1+y2). ⑵減法運算 減法法則,平面向量的坐標運算: 設=(x1,y1),=(

2、x2,y2),則-=(x1-x2,y1-y2). 設A、B兩點的坐標分別為(x1,y1),(x2,y2),=(x2-x1,y2-y1). ⑶實數(shù)與向量的積 定義:λ,其中λ>0時,λ與同向,|λ|=λ||; 當λ<0時,λ與反方向,|λ|=|λ|||. 0·= 平面向量的坐標運算:設=(x,y),則:λ=λ(x,y)=(λx, λy). 3、向量的幾何運算和坐標運算 向量的幾何運算是向量知識的基礎,本類題是向量加減法、數(shù)乘的運算定義和運算法則的基本練習,以向量運算圖或向量運算式給出,并通過圖解或式解來完成,設問形式有求解、作圖、化簡、證明等,解題方法比較直接。 向量的坐標

3、運算包括直接利用坐標法運算法則計算向量的和、差、數(shù)乘積。 4、兩個向量平行的充要條件 ∥=λ;設=(x1,y1),=(x2,y2),則∥x1y2-x2y1=0. ㈡平面向量的數(shù)量積 1、平面向量的數(shù)量積 幾何表示 定義:·=||||cosθ(a≠,b≠,0°≤θ≤180°) ·=0 坐標表示 ·=x1x2+y1y2 運算律 ·=· (λ)·=·(λ);(+)·=·+· 2、平面向量數(shù)量積的重要性質(zhì) 幾何表示 ⑴||== ⑵cosθ= ⑶|·|≤|||| 坐標表示 ⑴||= ⑵cosθ= ⑶|x1x2+y1y2|≤ 3、兩個向量垂直的充要條件 ⊥

4、·=0 (、均為非零向量) 設=(x1,y1),=(x2,y2),則⊥x1x2+y1y2=0. 4、常用的模的等式和不等式 ||2=·或||=; |·|≤||·||; ||2-||2=(+)(-) ||=(θ為、夾角). |||-|||≤|±|≤||+||. 特別是||2=2及其變式應用最為廣泛. ㈢線段的定比分點及平移 1、線段的定比分點及平移的基礎知識 ⑴線段的定比分點 線段的定比分點坐標公式: [P1(x1,y1),P2(x2,y2),P(x,y), =λ] 中點坐標公式: 三角形重心坐標公式:設△ABC的三個項點為A(x1,y1),B(x2,y2),C(x3,y

5、3),則重心G(x,y)的坐標為:x= , y= ⑵圖形變換公式 平移公式: 若點P0(x,y)按向量=(h,k)平移至P(x′,y′),則. 2、平移公式的三類運用 ⑴已知平移前后的解析式,求平移向量;⑵已知平移向量及解析式,求平移后的解析式; ⑶已知平移向量及平移后的解析式,求平移前的解析式. 說明:三類問題主要是運用平移公式及待定系數(shù)法. ㈣正余弦定理的運用 1、關于三角形邊、角的主要關系式 ⑴三角形內(nèi)角和等于180° ⑵三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊. ⑶三角形中大邊對大角,小邊對小角. ⑷正弦定理=2R. ⑸勾股定理c2=a

6、2+b2 (其中c為直角三角形的斜邊) ⑹余弦定理c2=a2+b2-2abcosC;cosC=. ⑺射影定理:a=bcosC+ccosB. ⑻三角形的面積公式:S△=ah(其中h是a邊上的高). S△=absinC. ⑼由A+B+C=π,易推出 ①sinA=sin(B+C),cosA=-cos(B+C),tanA=-tan(B+C) ②sin=cos, cos=,tan=cot.⑽a>bA>BsinA>sinB. ⑾銳角△ABC中,A+B>,A>-B,sinA>cosB,cosAc2,同樣可類比銳角△ABC中結論. 2、利用正、余弦定理判斷三角形的形狀

7、 由已知,利用三角形中的主要知識點,特別是角的關系和邊角關系,推出滿足題設條件的三角形的形狀。 3、利用正、余弦定理及三角形面積公式等解三角形. ⑴正弦定理反映了三角形的邊角關系,它可以用來解決兩類解斜三角形的問題. ①已知兩角和一邊,求其他邊和角. ②已知兩邊和其中一邊的對角,求另一邊的對角(可進一步求出其他的邊和角). ⑵余弦定理也反映了三角形的邊角關系,它是勾股定理的進一步推廣,它可以解決以下三類有關斜三角形問題. ①已知三邊,求三個角. ②已知兩邊和它們的夾角,求第三邊和其他兩個角. ③已知兩邊和其中一邊的對角,求第三邊和其他兩個角,此類問題需要討論. 二、易錯點

8、提示 1.向量的數(shù)量積不滿足結合律,即. 2.零向量與任何向量的數(shù)量積等于0,故平行向量不具有傳遞性即. 3.平面向量數(shù)量積的消去律不成立,即若是非零向量,且并不能得到, 只可得到、在上的投影相等. 4. 2=·=||||cos0=||2.故2是一個實數(shù). 5.、的夾角為銳角 、的夾角為鈍角 6.向量、不共線,,則A、P、B三點共線的充要條件是m+n=1. 7.在應用正弦定理解決“已知兩邊和其中一邊的對角,求解三角形”時應注意解的個數(shù). 8.在應用平移公式時,一定要分清P(x,y)為平移前的點,P’(x’,y’)為平移后的點,=(h,k)為平移向量,否則會出現(xiàn)方向性錯誤.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!