影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2022年高考數(shù)學(xué)專題復(fù)習(xí) 第27講 平面向量應(yīng)用舉例練習(xí) 新人教A版

上傳人:xt****7 文檔編號:105446252 上傳時間:2022-06-12 格式:DOC 頁數(shù):9 大?。?52.02KB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學(xué)專題復(fù)習(xí) 第27講 平面向量應(yīng)用舉例練習(xí) 新人教A版_第1頁
第1頁 / 共9頁
2022年高考數(shù)學(xué)專題復(fù)習(xí) 第27講 平面向量應(yīng)用舉例練習(xí) 新人教A版_第2頁
第2頁 / 共9頁
2022年高考數(shù)學(xué)專題復(fù)習(xí) 第27講 平面向量應(yīng)用舉例練習(xí) 新人教A版_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)專題復(fù)習(xí) 第27講 平面向量應(yīng)用舉例練習(xí) 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)專題復(fù)習(xí) 第27講 平面向量應(yīng)用舉例練習(xí) 新人教A版(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)專題復(fù)習(xí) 第27講 平面向量應(yīng)用舉例練習(xí) 新人教A版 [考情展望] 1.用向量的方法解決某些簡單的平面幾何證明問題.2.與三角函數(shù)、解析幾何等知識交匯命題,體現(xiàn)向量運算的工具性. 一、向量在平面幾何中的應(yīng)用 1.平面向量在平面幾何中的應(yīng)用主要是用向量的線性運算及數(shù)量積解決平面幾何中的平行、垂直、平移、全等、相似、長度、夾角等問題. 2.用向量解決常見平面幾何問題的技巧 問題類型 所用知識 公式表示 線平行、點共線、相似等問題 共線向量定理 a∥b?a=λb ?x1y2-x2y1=0(b≠0) 其中a=(x1,y1), b=(x2,y2) 垂直問

2、題 數(shù)量積的運算性質(zhì) a⊥b?a·b=0 ?x1x2+y1y2=0 a=(x1,y1),b=(x2,y2),其中a,b 為非零向量 夾角問題 數(shù)量積的定義 cos θ=(θ為向量a,b的夾角) 二、向量在物理中的應(yīng)用 1.向量的加法、減法在力的分解與合成中的應(yīng)用. 2.向量在速度的分解與合成中的應(yīng)用. 3.向量的數(shù)量積在合力做功問題中的應(yīng)用:W=f·s. 1.已知三個力f1,f2,f3作用于物體同一點,使物體處于平衡狀態(tài),若f1=(2,2),f2=(-2,3),則|f3|為(  ) A.2.5    B.4    C.2    D.5 【解析】  由題意知f1

3、+f2+f3=0,∴f3=-(f1+f2)=(0,-5), ∴|f3|=5. 【答案】 D 2.已知O是△ABC所在平面上一點,若·=·=·,則O是△ABC的(  ) A.內(nèi)心 B.重心 C.外心 D.垂心 【解析】  ·=·?·(-)=0, ∴·=0?OB⊥AC. 同理:OA⊥BC,OC⊥AB, ∴O是△ABC的垂心. 【答案】 D 3.若·+2=0,則△ABC為(  ) A.鈍角三角形 B.銳角三角形 C.等腰直角三角形 D.直角三角形 【解析】  ·+2=0可化為·(+)=0, 即·=0,所以⊥.所以△ABC為直角三角形. 【答案】 D

4、 4.已知兩個力F1、F2的夾角為90°,它們的合力F的大小為10 N,合力與F1的夾角為60°,那么F1的大小為________. 【解析】  如圖所示. |F1|=|F|cos 60°=10×=5(N). 【答案】 5 N 5.(xx·湖南高考)在△ABC中,AB=2,AC=3,·=1,則BC=(  ) A. B. C.2 D. 【解析】  ∵·=1,且AB=2, ∴1=||||cos(π-B),∴||cos B=-. 在△ABC中,|AC|2=|AB|2+|BC|2-2|AB||BC|cos B, 即9=4+|BC|2-2×2×.∴|BC|=.

5、 【答案】 A 6.(xx·福建高考)在四邊形ABCD中,=(1,2),=(-4,2),則該四邊形的面積為(  ) A. B.2 C.5 D.10 【解析】  ∵·=(1,2)·(-4,2)=-4+4=0, ∴⊥,∴S四邊形ABCD=||·||=××2=5. 【答案】 C 考向一 [080] 向量在平面幾何中的應(yīng)用  (1)(xx·長沙模擬)在△ABC中,已知向量與滿足·=0,且·=,則△ABC為(  ) A.等邊三角形      B.直角三角形 C.等腰非等邊三角形 D.三邊均不相等的三角形 (2)(xx·濟(jì)南模擬)設(shè)a,b,c為同一平面內(nèi)具有相同起點

6、的任意三個非零向量,且a與b不共線,a⊥c,|a|=|c|,則|b·c|的值一定等于(  ) A.以a,b為鄰邊的平行四邊形的面積 B.以b,c為兩邊的三角形面積 C.以a,b為兩邊的三角形面積 D.以b,c為鄰邊的平行四邊形的面積 (3)已知△ABC的三邊長AC=3,BC=4,AB=5,P為AB邊上任意一點,則·(-)的最大值為________. 【思路點撥】 (1)是單位向量,結(jié)合平行四邊形法則及·=0分析AB與AC的關(guān)系,借助數(shù)量積的定義求∠CBA,進(jìn)而得出△ABC的形狀. (2)借助數(shù)量積的定義及三角函數(shù)誘導(dǎo)公式求解. (3)可采用坐標(biāo)法和基向量法分別求解本題. 【嘗

7、試解答】 (1)因為·=0,所以∠BAC的平分線垂直于BC,所以AB=AC. 又·=,所以cos∠BAC=,即∠BAC=,所以△ABC為等邊三角形. (2)依題意可得|b·c|=|b||c|cos〈b,c〉 =|b||c|sin〈a,b〉 =S平行四邊形. ∴|b·c|的值一定等于以b,c為鄰邊的平行四邊形的面積. (3) 法一 (坐標(biāo)法)以C為原點,建立平面直角坐標(biāo)系如圖,設(shè)P點坐標(biāo)為(x,y)且0≤y≤3,0≤x≤4,則·(-)=·=(x,y)·(0,3)=3y,當(dāng)y=3時,取得最大值9. 法二 (基向量法)∵=+,-=, ∴·(-)=(+)· =2+·=9-·

8、=9-||·||·cos∠BAC =9-3||·cos∠BAC, ∵cos∠BAC為正且為定值, ∴當(dāng)||最小即||=0時,·(-)取得最大值9. 【答案】 (1)A (2)D (3)9 規(guī)律方法1 1.向量在平面幾何中的三大應(yīng)用:一是借助運算判斷圖形的形狀,二是借助模、數(shù)量積等分析幾何圖形的面積;三是借助向量探尋函數(shù)的最值表達(dá)式,進(jìn)而求最值. 2.平面幾何問題的向量解法 (1)坐標(biāo)法,把幾何圖形放在適當(dāng)?shù)淖鴺?biāo)系中,就賦予了有關(guān)點與向量具體的坐標(biāo),這樣就能進(jìn)行相應(yīng)的代數(shù)運算和向量運算,從而使問題得到解決. (2)基向量法,適當(dāng)選取一組基底,溝通向量之間的聯(lián)系,利用向量共線構(gòu)造關(guān)

9、于設(shè)定未知量的方程來進(jìn)行求解. 對點訓(xùn)練 (1)已知點O,N,P在△ABC所在平面內(nèi),且||=||=||,++=0,·=·=·,則點O,N,P依次是△ABC的(  ) A.重心、外心、垂心     B.重心、外心、內(nèi)心 C.外心、重心、垂心 D.外心、重心、內(nèi)心 (注:三角形的三條高線交于一點,此點稱為三角形的垂心) (2)(xx·課標(biāo)全國卷Ⅱ)已知正方形ABCD的邊長為2,E為CD的中點,則·=________. 【解析】  (1)∵||=||=||,即點O到A,B,C三點的距離相等,∴點O為△ABC的外心. 如圖,設(shè)D為BC邊的中心,則+=2, ∵++=0, ∴+

10、2=0, ∴=2,∴A,D,N三點共線, ∴點N在BC邊的中線上. 同理,點N也在AB,AC邊的中線上,∴點N是△ABC的重心. ∵·=·, ∴·-·=0,∴·(-)=0, ∴·=0,∴⊥. 同理,⊥,⊥, ∴點P是△ABC的垂心. (2)如圖,以A為坐標(biāo)原點,AB所在的直線為x軸,AD所在的直線為y軸,建立平面直角坐標(biāo)系,則A(0,0),B(2,0),D(0,2),E(1,2), ∴=(1,2),=(-2,2), ∴·=1×(-2)+2×2=2. 【答案】 (1)C (2)2 考向二 [081] 向量在物理中的應(yīng)用  (1)一質(zhì)點受到平面上的三個力F1、F2、

11、F3(單位:牛頓)的作用而處于平衡狀態(tài).已知F1、F2成60°角,且F1、F2的大小分別為2和4,則F3的大小為(  ) A.2    B.2    C.2    D.6 圖4-4-1 (2)如圖4-4-1所示,已知力F與水平方向的夾角為30°(斜向上),F(xiàn)的大小為50 N,F(xiàn)拉著一個重80 N的木塊在摩擦因數(shù)μ=0.02的水平平面上運動了20 m,問F、摩擦力f所做的功分別為多少? 【思路點撥】 (1)利用F1+F2+F3=0,結(jié)合向量模的求法求解. (2)力在位移上所做的功,是向量數(shù)量積的物理含義,要先求出力F,f和位移的夾角. 【嘗試解答】 (1)如圖所示,由已知得F

12、1+F2+F3=0,∴F3=-(F1+F2). F=F+F+2F1·F2 =F+F+2|F1||F2|cos 60°=28. ∴|F3|=2. 【答案】 A (2)設(shè)木塊的位移為s, 則F·s=|F|·|s|cos 30°=50×20×=500 J, F在豎直方向上的分力大小為 |F|sin 30°=50×=25(N), 所以摩擦力f的大小為|f|=(80-25)×0.02=1.1(N), 所以f·s=|f|·|s|cos 180°=1.1×20×(-1)=-22 J. ∴F,f所做的功分別是500 J,-22 J. 規(guī)律方法2 1.物理學(xué)中的“功”可看作是向量的數(shù)量積

13、的原型. 2.應(yīng)善于將平面向量知識與物理有關(guān)知識進(jìn)行類比.例如,向量加法的平行四邊形法則可與物理中力的合成進(jìn)行類比,平面向量基本定理可與物理中力的分解進(jìn)行類比. 3.用向量方法解決物理問題的步驟:一是把物理問題中的相關(guān)量用向量表示;二是轉(zhuǎn)化為向量問題的模型,通過向量運算解決問題;三是將結(jié)果還原為物理問題.   考向三 [082] 向量在三角函數(shù)中的應(yīng)用  (xx·遼寧高考)設(shè)向量a=(sin x,sin x),b=(cos x,sin x),x∈. (1)若|a|=|b|,求x的值; (2)設(shè)函數(shù)f(x)=a·b,求f(x)的最大值. 【思路點撥】 分別表示兩向量的模,利用相等求

14、解x的值;利用數(shù)量積運算及輔助角公式化為一個角的一種函數(shù)求解. 【嘗試解答】 (1)由|a|2=(sin x)2+sin2 x=4sin2x, |b|2=cos2x+sin2x=1, 及|a|=|b|,得4sin2x=1. 又x∈,從而sin x=,所以x=. (2)f(x)=a·b=sin x·cos x+sin2x =sin 2x-cos 2x+=sin+, 當(dāng)x=∈時,sin取最大值1. 所以f(x)的最大值為. 規(guī)律方法3 平面向量與三角函數(shù)結(jié)合的題目的解題思路通常是將向量的數(shù)量積與模經(jīng)過坐標(biāo)運算后轉(zhuǎn)化為三角問題,然后利用三角函數(shù)基本公式求解. 對點訓(xùn)練 已知O為坐

15、標(biāo)原點,向量=(sin α,1),=(cos α,0),=(-sin α,2),點P滿足=. (1)記函數(shù)f(α)=·,求函數(shù)f(α)的最小正周期; (2)若O、P、C三點共線,求|+|的值. 【解】 (1)=(cos α-sin α,-1), 設(shè)=(x,y),則=(x-cos α,y), 由=得x=2cos α-sin α,y=-1,故=(2cos α-sin α,-1). =(sin α-cos α,1),=(2sin α,-1), ∴f(α)=(sin α-cos α,1)·(2sin α,-1) =2sin2α-2sin αcos α-1 =-(sin 2α+cos

16、2α) =-sin, ∴f(α)的最小正周期T=π. (2)由O、P、C三點共線可得 (-1)×(-sin α)=2×(2cos α-sin α),得tan α=, sin 2α===, |+|= ==. 規(guī)范解答之七 平面向量與三角函數(shù)的交匯問題 求平面向量與三角函數(shù)的交匯問題的一般步驟:第一步:將向量間的關(guān)系式化成三角函數(shù)式;第二步:化簡三角函數(shù)式;第三步:求三角函數(shù)式的值或求角或分析三角函數(shù)式的性質(zhì);第四步:明確表述結(jié)論. ———— [1個示范例] ———— [1個規(guī)范練] ————    (12分)(xx·江蘇高考)已知a=(cos α,sin α),b=(c

17、os β,sin β),0<β<α<π. (1)若|a-b|=,求證:a⊥b; (2)設(shè)c=(0,1),若a+b=c,求α,β的值. 【規(guī)范解答】 (1)證明 由題意得|a-b|2=2,2分 即(a-b)2=a2-2a·b+b2=2. 又因為a2=b2=|a|2=|b|2=1, 所以2-2a·b=2,即a·b=0,故a⊥b.5分 (2)因為a+b=(cos α+cos β,sin α+sin β)=(0,1), 所以7分 由此得,cos α=cos(π-β),由0<β<π,得0<π-β<π.9分 又0<α<π,故α=π-β.代入sin α+sin β=1,得sin α=si

18、n β=,11分 而α>β,所以α=,β=.12分 【名師寄語】 (1)熟練掌握平面向量的線性運算及數(shù)量積的運算是求解此類問題的前提. (2)解決平面向量與三角函數(shù)的交匯問題,要利用平面向量的定義和運算法則準(zhǔn)確轉(zhuǎn)化為三角函數(shù)式.在此基礎(chǔ)上運用三角函數(shù)的知識求解. (xx·煙臺模擬)已知向量a=(cos α,sin α),b=(cos β,sin β),|a-b|=. (1)求cos(α-β)的值; (2)若0<α<,-<β<0,且sin β=-.求sin α. 【解】 (1)|a-b|=,|a-b|2=, a2-2ab+b2=, ∴2-2(cos αcos β+sin αsin β)=, ∴2-2cos(α-β)=,即cos(α-β)=. (2)sin α=sin(α-β+β)=sin(α-β)cos β+cos(α-β)sin β, 又0<α<,-<β<0,則0<α-β<π, ∴sin(α-β)=,cos β=, ∴sin α=×+×=.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!