《2022年高二數(shù)學(xué)下學(xué)期期中試題 理(VI)》由會員分享,可在線閱讀,更多相關(guān)《2022年高二數(shù)學(xué)下學(xué)期期中試題 理(VI)(6頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高二數(shù)學(xué)下學(xué)期期中試題 理(VI)
一、選擇題(本大題共12小題,每小題5分,共60分。每小題各有四個(gè)選擇支,僅有一個(gè)選擇支正確。請用2B鉛筆把答題卡中所選答案的標(biāo)號涂黑。)
1.復(fù)數(shù)= ( )
A. B. C.0 D.
2.一個(gè)物體的運(yùn)動方程為其中的單位是米,的單位是秒,那么物體,在秒末的瞬時(shí)速度是( )米/秒
A.2 B.4 C.6 D.8
3. 函數(shù)單調(diào)遞增區(qū)間是( )
A.
2、 B. C. D.
4.若,則的值為( )
A. 6 B. 4 C. 3 D. 2.
5. 在用數(shù)學(xué)歸納法證明時(shí),則當(dāng)時(shí)左端應(yīng)在的基礎(chǔ)上加上的項(xiàng)是( )
A. B.
C. D.
6.在彈性限度內(nèi),彈簧所受的壓縮力與縮短的距離按 胡克定律計(jì)算.今有一彈簧原長,每壓縮需的壓縮力,若把這根彈簧從壓縮至(在彈性限度內(nèi)),外力克服彈簧的彈力做了( )功(單位:)
A. B. C.0.686
3、 D.0.98
7.直線與曲線相切于點(diǎn)(2,3),則的值為( )
A.-3 B.9 C.-15 D.-7
8.已知,觀察下列各式:,,,...,類比有(),則( )
A. B. C. D.
9.下列說法正確的有幾個(gè)( )
(1)回歸直線過樣本點(diǎn)的中心;
(2)線性回歸方程對應(yīng)的直線至少經(jīng)過其樣本數(shù)據(jù)點(diǎn),,中的一個(gè)點(diǎn);
(3)在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越寬,其模型擬合的精度越高;
(4)在回歸分析中
4、,為0.98的模型比為0.80的模型擬合的效果好.
A.1 B.2 C.3 D. 4
10.已知實(shí)數(shù)a,b滿足≤a≤1,≤b≤1,則函數(shù)y=x3-ax2+bx+5有極值的概率為( )
A. B. C. D.
11. 定義在R上的可導(dǎo)函數(shù)f(x),且f(x)圖像連續(xù),當(dāng)x≠0時(shí), ,則函數(shù)的零點(diǎn)的個(gè)數(shù)為( )
A.1 B.2 C.0 D.0或2
12. 對于三次函數(shù),給出定義:設(shè)是函數(shù)的導(dǎo)數(shù),是的導(dǎo)數(shù),若方
5、程有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”。某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對稱中心,且“拐點(diǎn)”就是對稱中心。設(shè)函數(shù),則=( )
A. B. C. D.
二、填空題(本大題共4小題,每小題5分,共20分。請把答案填在答題卡中相應(yīng)的位置上。)
O
-2
4
1
-1
-2
1
2
11.若是純虛數(shù),則實(shí)數(shù)的值為_______
12.觀察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
……
照此規(guī)律,第7
6、個(gè)等式為 。
13.如右圖,是定義域?yàn)镽的函數(shù)的圖象,是
函數(shù)的導(dǎo)函數(shù),則不等式的解集為
14.已知函數(shù)是定義在R上的奇函數(shù),且時(shí),函數(shù)取極值1;若對任意的,均有 成立,則s的最小值為__________
三、解答題(本大題共6小題,共70分。解答應(yīng)寫出必要的文字說明、證明過程或演算步驟。)
15.(本小題10分)
已知函數(shù)
⑴求的最小正周期及對稱中心;
⑵若,求的最大值和最小值.
16.(本小題滿分10分) 在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列 的各項(xiàng)均為正數(shù),,公比為,且,.
(1)求與;
7、
(2)設(shè)數(shù)列滿足,求的前項(xiàng)和.
17.(本小題滿分12分)
(第17題)
如圖,四棱錐的底面ABCD是平行四邊形,,,面,設(shè)為中點(diǎn),點(diǎn)在線段上且.
(1)求證:平面;
(2)設(shè)二面角的大小為,
若,求的長.
18. (本小題滿分12分)
一個(gè)均勻的正四面體的四個(gè)面上分別涂有1,2,3,4四個(gè)數(shù)字,現(xiàn)隨機(jī)投擲兩次,正四面體面朝下的數(shù)字分別為x1,x2,記X=(x1-3)2+(x2-3)2.
(1)分別求出X取得最大值和最小值時(shí)的概率;
(2)求X的分布列及數(shù)學(xué)期望.
19.(本小題滿分12
8、分)
已知橢圓的右焦點(diǎn)為F,離心率為,過點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長為,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)經(jīng)過點(diǎn)M(0,2)作直線A B交橢圓C于A、B兩點(diǎn),求△AOB面積的最大值
20.(本小題滿分14分)
已知, ,,其中是無理數(shù)且,.
(1)若,求的單調(diào)區(qū)間與極值;
(2)求證:在(1)的條件下,;
(3)是否存在實(shí)數(shù),使的最小值是?若存在,求出的值;若不存在,說明理由.
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
9、
A
C
C
A
D
A
C
D
B
C
C
B
11.___1__ 12.
13. 14.
15.解:⑴
∴的最小正周期為,
令,則,
∴的對稱中心為;
⑵∵ ∴ ∴ ∴
∴當(dāng)時(shí),的最小值為;當(dāng)時(shí),的最大值為
16.解(1)設(shè)的公差為.
因?yàn)樗浴?分
解得 或(舍),.……………………5分
(2)由(1)可知,,……………………8分
所以.
故
17.解:(Ⅰ)由,得,.
又面,所以以分別為軸建立坐標(biāo)系如圖.
則
設(shè),則 .
設(shè),得:
.
10、
解得:,,,
所以. ……..5分
所以,,.
設(shè)面的法向量為,則,?。?
因?yàn)?,且面,所以平面? ……..9分
(Ⅱ)設(shè)面法向量為, 因?yàn)椋?
所以,取 . …….. 11分
由,得.
,,所以. ….解:(Ⅰ)設(shè),則,知.
18.解:(1)擲出點(diǎn)數(shù)x可能是:1,2,3,4.則x-3分別得:-2,-1,0,1.于是(x-3)2的所有取值分別為:0,1,4.
因此X的所有取值為0,1,2,4,5,8.
當(dāng)x1=1且x2=1時(shí),X=(x1-3)2+(x2-3)2可取得最大值8,P(X=8
11、)=×=.
當(dāng)x1=3且x2=3時(shí),X=(x1-3)2+(x2-3)2可取得最小值0,
P(X=0)=×=.……………4分
(2)由(1)知X的所有取值為0,1,2,4,5,8. ……………5分
P(X=0)=P(X=8)=;
當(dāng)X=1時(shí),(x1,x2)的所有取值為(2,3),(4,3),(3,2),(3,4),
即P(X=1)==;
當(dāng)X=2時(shí),(x1,x2)的所有取值為(2,2),(4,4),(4,2),(2,4),
即P(X=2)==;
當(dāng)X=4時(shí),(x1,x2)的所有取值為(1,3),(3,1),
即P(X=4)==;
當(dāng)X=5時(shí),(x1,x2
12、)的所有取值為(2,1),(1,4),(1,2),(4,1),
即P(X=5)==.
所以X的分布列為
0
1
2
4
5
8
19.過點(diǎn)且與軸垂直的直線方程為,代入橢圓方程,有
,解得.
于是,解得.
又,從而.
所以橢圓的方程為. …………………………………(4分)
(Ⅱ)設(shè),.由題意可設(shè)直線的方程為.
由消去并整理,得.
由,得.
由韋達(dá)定理,得.
點(diǎn)到直線的距離為,,
.
設(shè),由,知.
于是.
由,得.當(dāng)且僅當(dāng)時(shí)等號成立.
13、
所以△面積的最大值為
20.解:(1)當(dāng)a=1時(shí),,, (1分)
令,得x=1.
當(dāng)時(shí),,此時(shí)單調(diào)遞減; (2分)
當(dāng)時(shí),,此時(shí)單調(diào)遞增. (3分)
所以的單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,e),的極小值為. (4分)
(2)由(1)知在上的最小值為1. (5分)
令,,所以. (6分)
當(dāng)時(shí),,在上單調(diào)遞增, (7分)
14、所以.
故在(1)的條件下,. (8分)
(3)假設(shè)存在實(shí)數(shù)a,使()有最小值-1.
因?yàn)椋? (9分)
①當(dāng)時(shí),,在上單調(diào)遞增,此時(shí)無最小值;(10分)
②當(dāng)時(shí),當(dāng)時(shí),,故在(0,a)單調(diào)遞減;當(dāng)時(shí),,故在(a,e)單調(diào)遞增; (11分)
所以,得,滿足條件; (12分)
③當(dāng)時(shí),因?yàn)?,所以,故在上單調(diào)遞減.
,得(舍去); (13分)
綜上,存在實(shí)數(shù),使得在上的最小值為-1. (14分)