《2022年高三物理復(fù)習(xí) 電磁感應(yīng)中的能量問題導(dǎo)學(xué)案》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高三物理復(fù)習(xí) 電磁感應(yīng)中的能量問題導(dǎo)學(xué)案(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高三物理復(fù)習(xí) 電磁感應(yīng)中的能量問題導(dǎo)學(xué)案
一、課程標(biāo)準(zhǔn)與考綱解讀
1、課程標(biāo)準(zhǔn):
(1)收集資料,了解電磁感應(yīng)現(xiàn)象的發(fā)現(xiàn)過程,體會(huì)人類探索自然規(guī)律的科學(xué)態(tài)度和科學(xué)精神。?
(2)通過實(shí)驗(yàn),理解感應(yīng)電流的產(chǎn)生條件。舉例說明電磁感應(yīng)在生活和生產(chǎn)中的應(yīng)用。?
(3)通過探究,理解楞次定律。理解法拉第電磁感應(yīng)定律。?
2、考綱要求:???
電磁感應(yīng)現(xiàn)象???????? Ⅰ級(jí)要求?
磁通量???????????????????? Ⅰ級(jí)要求
法拉第電磁感應(yīng)定律 Ⅱ級(jí)要求??
3、解讀:會(huì)分析電磁感應(yīng)問題中的能量轉(zhuǎn)化,并會(huì)進(jìn)行有關(guān)計(jì)算
4、近幾年高
2、考試題中的分布情況
年份
題號(hào)
題型
分值
考查內(nèi)容
xx年
21題
選擇題
6分
電磁感應(yīng)(右手定則)
xx年
19題
選擇題
6分
電磁感應(yīng)(法拉第電磁感應(yīng)定律)
xx年
17題
選擇題
6分
電磁感應(yīng)(圖像)
xx年
25題
計(jì)算題
19分
電磁感應(yīng)(動(dòng)力學(xué))
xx年
18題
選擇題
6分
電磁感應(yīng)(圖像)
xx年
19題
選擇題
6分
電磁感應(yīng)(產(chǎn)生)
二、考點(diǎn)精析 電磁感應(yīng)中能量問題的求解思路
例1、(基本模型Ⅰ)
如圖,水平金屬導(dǎo)軌寬為L(zhǎng)(電阻不計(jì)),左端連一定值電阻R,空間存在豎直
3、向上的勻強(qiáng)磁場(chǎng),磁感應(yīng)強(qiáng)度大小為B。一質(zhì)量為m的金屬棒,以初速度v0沿導(dǎo)軌向右運(yùn)動(dòng)。試問:
①若導(dǎo)軌光滑,則金屬棒運(yùn)動(dòng)過程中整個(gè)回路中產(chǎn)生的總的焦耳熱是多少?
②上一問中,若金屬棒的電阻為r,則金屬棒運(yùn)動(dòng)過程中定值電阻R上產(chǎn)生的焦耳熱是多少?
③若導(dǎo)軌與金屬棒之間的動(dòng)摩擦因數(shù)為μ,金屬棒滑行S距離后速度減為零,則此過程中整個(gè)回路中產(chǎn)生的總的焦耳熱是多少?
例2、(基本模型Ⅱ)
如圖,水平光滑金屬導(dǎo)軌寬為L(zhǎng)(電阻不計(jì)),左端連一定值電阻R,空間存
在垂直于紙面向里的勻強(qiáng)磁場(chǎng),磁感應(yīng)強(qiáng)度大小為B。一質(zhì)量為m、電阻為r
的金屬棒放在導(dǎo)軌上,與之接觸良好。試問:
4、①若棒在外力F作用下以速度v0勻速向右運(yùn)動(dòng),求滑行距離S過程中回路中產(chǎn)生的總的焦耳熱是多少?
②若棒在恒力F作用下由靜止開始向右運(yùn)動(dòng)距離S后開始勻速運(yùn)動(dòng),試求此過程中定值電阻R產(chǎn)生的焦耳熱。
(拓展:如果棒與導(dǎo)軌之間有摩擦又如何?)
學(xué)法指導(dǎo)
1、過程分析:
①電磁感應(yīng)現(xiàn)象中產(chǎn)生感應(yīng)電流的過程,實(shí)際上就是其他形式的能向電能轉(zhuǎn)化的過程。
②這一過程中的能量轉(zhuǎn)化是通過安培力做功來實(shí)現(xiàn)的:克服安培力做了多少功,就有多少其他形式的能轉(zhuǎn)化為電能,進(jìn)而轉(zhuǎn)化為內(nèi)能即焦耳熱(外電路是純電阻電路)
2、求解思路:
求解焦耳熱的三種方法:
①焦耳定律:
5、 (感應(yīng)電流恒定)
②功能關(guān)系:
③能量守恒定律:
三、真題演練
1. (xx·安徽·16)如圖所示,足夠長(zhǎng)的平行金屬導(dǎo)軌傾斜放置,傾角為37°,寬度為0.5 m,電阻忽略不計(jì),其上端接一小燈泡,電阻為1 Ω.一導(dǎo)體棒MN垂直導(dǎo)軌放置,質(zhì)量為0.2 kg,接入電路的電阻為1 Ω,兩端與導(dǎo)軌接觸良好,與導(dǎo)軌間的動(dòng)摩擦因數(shù)為0.5.在導(dǎo)軌間存在著垂直于導(dǎo)軌平面的勻強(qiáng)磁場(chǎng),磁感應(yīng)強(qiáng)度為0.8 T.將導(dǎo)體棒MN由靜止釋放,運(yùn)動(dòng)一段時(shí)間后,小燈泡穩(wěn)定發(fā)光,此后導(dǎo)體棒MN的運(yùn)動(dòng)速度以及小燈泡消耗的電功率分別為(重力加速度g取10 m/s2,sin 37°=0.6)( )
6、
A.2.5 m/s 1 W B.5 m/s 1 W
C.7.5 m/s 9 W D.15 m/s 9 W
解:
(1)由導(dǎo)體棒的受力平衡可得:
F=mgsin37°-μmgcos37°=0.2kg×10N/kg(0.6-0.5×0.8)=0.4N;
故安培力的大小為F=0.4N,
設(shè)平衡時(shí)電路中的電流為I1,由公式F=BI1L,得電路中的電流為I1==1A,
故小燈泡穩(wěn)定發(fā)光時(shí)消耗的電功率P=I12R=(1A)2×1Ω=1W;
(2)設(shè)平衡時(shí)導(dǎo)體棒的動(dòng)動(dòng)速度為v,
則根據(jù)E1==BLv,I1=得,1A=,
解之得v=5m/s。
巧學(xué)勤練
7、
如圖所示,兩根足夠長(zhǎng)的固定平行金屬導(dǎo)軌位于傾角θ=30°的斜面上,導(dǎo)軌上、下端各接有阻值R=20Ω的電阻。導(dǎo)軌電阻忽略不計(jì),導(dǎo)軌寬度L=2m,在整個(gè)導(dǎo)軌平面內(nèi)都有垂直于導(dǎo)軌平面向上的勻強(qiáng)磁場(chǎng),磁感應(yīng) 強(qiáng)度B=1T,質(zhì)量m=0.1kg、連入電路的電阻r=10Ω的金屬棒ab在較高處由靜止釋放,當(dāng)金屬棒ab下滑高度h=3m時(shí),速度恰好達(dá)到最大值v=2m/s。金屬棒ab在下滑過程中始終與導(dǎo)軌垂直且與導(dǎo)軌良好接觸,g取10m/s2。求:?
(1)金屬棒ab由靜止至下滑高度為3m的運(yùn)動(dòng)過程中機(jī)械能的減小量。
(2)金屬棒ab由靜止至下滑高度為3m的運(yùn)動(dòng)過程中導(dǎo)軌上端電阻R中產(chǎn)生的熱量。
解:(1)
8、金屬棒ab機(jī)械能的減少量? ①?
(2)如果沒有摩擦,金屬棒達(dá)到速度最大時(shí)滿足?
解得vm'=2.5 m/s?
而實(shí)際的最大速度是2 m/s,說明一定存在摩擦
故應(yīng)滿足②
解得Ff=0.1 N ③?
由能量守恒得,損失的機(jī)械能等于金屬棒ab克服摩擦力做功和產(chǎn)生的電熱之和△E=Q+Ffh/sin30°得?
電熱Q=△E-Ffh/sin30° ④?
上端電阻R中產(chǎn)生的熱量QR=Q/4 ⑤?
聯(lián)立①②③④⑤式得:QR=0.55 J
2、 (xx·江蘇·13)如圖所示,在勻強(qiáng)磁場(chǎng)中有一傾斜的平行金屬導(dǎo)軌,導(dǎo)軌間距為L(zhǎng),長(zhǎng)為3d,導(dǎo)軌平面與水平面的夾角為θ,在導(dǎo)軌的中部刷有
9、一段長(zhǎng)為d的薄絕緣涂層.勻強(qiáng)磁場(chǎng)的磁感應(yīng)強(qiáng)度大小為B,方向與導(dǎo)軌平面垂直.質(zhì)量為m的導(dǎo)體棒從導(dǎo)軌的頂端由靜止釋放,在滑上涂層之前已經(jīng)做勻速運(yùn)動(dòng),并一直勻速滑到導(dǎo)軌底端.導(dǎo)體棒始終與導(dǎo)軌垂直,且僅與涂層間有摩擦,接在兩導(dǎo)軌間的電阻為R,其他部分的電阻均不計(jì),重力加速度為g.求:
(1)導(dǎo)體棒與涂層間的動(dòng)摩擦因數(shù)μ;
(2)導(dǎo)體棒勻速運(yùn)動(dòng)的速度大小v;
(3)整個(gè)運(yùn)動(dòng)過程中,電阻產(chǎn)生的焦耳熱Q.
答案:(1)μ=tanθ;(2)v=;(3)Q=2mgdsinθ-
解:(1)導(dǎo)體棒在絕緣涂層上滑動(dòng)時(shí),受重力mg、導(dǎo)軌的支持力N和滑動(dòng)摩擦力f作用,根據(jù)共點(diǎn)力平衡條件有:mgsinθ=
10、f,N=mgcosθ
根據(jù)滑動(dòng)摩擦定律有:f=μN(yùn) 聯(lián)立以上三式解得:μ=tanθ
(2)導(dǎo)體棒在光滑導(dǎo)軌上滑動(dòng)時(shí),受重力mg、導(dǎo)軌的支持力N和沿導(dǎo)軌向上的安培力FA作用,根據(jù)共點(diǎn)力平衡條件有:FA=mgsinθ 根據(jù)安培力大小公式有:FA=ILB
根據(jù)閉合電路歐姆定律有:I= 根據(jù)法拉第電磁感應(yīng)定律有:E=BLv
聯(lián)立以上各式解得:v=
(3)由題意可知,只有導(dǎo)體棒在導(dǎo)軌光滑段滑動(dòng)時(shí),回路中有感應(yīng)電流產(chǎn)生,因此對(duì)導(dǎo)體棒在第1、3段d長(zhǎng)導(dǎo)軌上滑動(dòng)的過程,根據(jù)能量守恒定律有:Q=2mgdsinθ-
解得:Q=2mgdsinθ-
考點(diǎn):本題主
11、要考查了共點(diǎn)力平衡條件、安培力大小公式、閉合電路歐姆定律、法拉第電磁感應(yīng)定律、能量守恒定律的應(yīng)用問題,屬于中檔題。
3.(xx·天津·11)如圖所示,兩根足夠長(zhǎng)的平行金屬導(dǎo)軌固定在傾角θ=30°的斜面上,導(dǎo)軌電阻不計(jì),間距L=0.4 m,導(dǎo)軌所在空間被分成區(qū)域Ⅰ和Ⅱ,兩區(qū)域的邊界與斜面的交線為MN.Ⅰ中的勻強(qiáng)磁場(chǎng)方向垂直斜面向下,Ⅱ中的勻強(qiáng)磁場(chǎng)方向垂直斜面向上,兩磁場(chǎng)的磁感應(yīng)強(qiáng)度大小均為B=0.5 T.在區(qū)域Ⅰ中,將質(zhì)量m1=0.1 kg、電阻R1=0.1 Ω的金屬條ab放在導(dǎo)軌上,ab剛好不下滑.然后,在區(qū)域Ⅱ中將質(zhì)量m2=0.4 kg,電阻R2=0.1 Ω的光滑導(dǎo)體棒cd置于導(dǎo)軌上,
12、由靜止開始下滑.cd在滑動(dòng)過程中始終處于區(qū)域Ⅱ的磁場(chǎng)中,ab、cd始終與導(dǎo)軌垂直且兩端與導(dǎo)軌保持良好接觸,取g=10 m/s2,
(1)cd下滑的過程中,ab中的電流方向;
(2)ab剛要向上滑動(dòng)時(shí),cd的速度v多大;
(3)從cd開始下滑到ab剛要向上滑動(dòng)的過程中,cd滑動(dòng)的距離x=
3.8 m,此過程中ab上產(chǎn)生的熱量Q是多少.
解:
(1)由右手定則可知,電流由a流向b;?
(2)開始放置ab剛好不下滑時(shí),ab所受摩擦力為最大靜摩擦力,?
由平衡條件得:Fmax=m1gsinθ,? ab剛好要上滑時(shí),感應(yīng)電動(dòng)勢(shì):E=BLv,?
電路電流:I=?,?
13、ab受到的安培力:F安=BIL,?
此時(shí)ab受到的最大靜摩擦力方向沿斜面向下,?由平衡條件得:F安=m1gsinθ+Fmax,?
代入數(shù)據(jù)解得:v=5m/s;?
(3)cd棒運(yùn)動(dòng)過程中電路產(chǎn)生的總熱量為Q總,?
由能量守恒定律得:m2gxsinθ=Q總+?m2v2,?ab上產(chǎn)生的熱量:Q=?Q總,?
解得:Q=1.3J;?
4、(xx·新課標(biāo)Ⅱ·25)半徑分別為r和2r的同心圓形導(dǎo)軌固定在同一水平面內(nèi),一長(zhǎng)為r、質(zhì)量為m且質(zhì)量分布均勻的直導(dǎo)體棒AB置于圓導(dǎo)軌上面,BA的延長(zhǎng)線通過圓導(dǎo)軌中心O,裝置的俯視圖如圖所示.整個(gè)裝置位于一勻強(qiáng)磁場(chǎng)中,磁感應(yīng)強(qiáng)度的大小為B,方向豎直向下.在內(nèi)圓
14、導(dǎo)軌的C點(diǎn)和外圓導(dǎo)軌的D點(diǎn)之間接有一阻值為R的電阻(圖中未畫出).直導(dǎo)體棒在水平外力作用下以角速度ω繞O逆時(shí)針勻速轉(zhuǎn)動(dòng),在轉(zhuǎn)動(dòng)過程中始終與導(dǎo)軌保持良好接觸.設(shè)導(dǎo)體棒與導(dǎo)軌之間的動(dòng)摩擦因數(shù)為μ,導(dǎo)體棒和導(dǎo)軌的電阻均可忽略.重力加速度大小為g.求:
(1)通過電阻R的感應(yīng)電流的方向和大??;
(2)外力的功率.
解:
(1)在時(shí)間內(nèi),導(dǎo)體棒掃過的面積為:①
根據(jù)法拉第電磁感應(yīng)定律,導(dǎo)體棒產(chǎn)生的感應(yīng)電動(dòng)勢(shì)大小為:②
根據(jù)右手定則,感應(yīng)電流的方向是從B端流向A端,因此流過導(dǎo)體R的電流方向是從C端流向D端;由歐姆定律流過導(dǎo)體R的電流滿足;③
聯(lián)立①②③可得:④
(2)在豎直方向有:mg-2
15、N=0??????????????⑤
式中,由于質(zhì)量分布均勻,內(nèi)外圓導(dǎo)軌對(duì)導(dǎo)體棒的正壓力相等,其值為N,兩導(dǎo)軌對(duì)運(yùn)動(dòng)的導(dǎo)體棒的滑動(dòng)摩擦力均為:⑥
在時(shí)間內(nèi),導(dǎo)體棒在內(nèi)外圓導(dǎo)軌上掃過的弧長(zhǎng)分別為:⑦
和⑧
克服摩擦力做的總功為:⑨
在時(shí)間內(nèi),消耗在電阻R上的功為:⑩
根據(jù)能量轉(zhuǎn)化和守恒定律,外力在時(shí)間內(nèi)做的功為:(11)
外力的功率為:(12)
由④至(12)式可得:(13)
四、專題小結(jié)
(1)求解電磁感應(yīng)現(xiàn)象中回路中產(chǎn)生的總的焦耳熱的三種主要思路:
①利用克服安培力做功求解:電磁感應(yīng)中產(chǎn)生的電能等于克服安培力做的功。
②利用能量守恒定律求解:其他形式能量的減少量等于產(chǎn)生的電能。
③利用焦耳定律求解:結(jié)合等效電路分析,利用電路知識(shí)求解。
(2)分析步驟:先電后力再能量
“源”→“路”→“力”→“運(yùn)動(dòng)狀態(tài)及能量轉(zhuǎn)化”