2022屆高考數(shù)學(xué)一輪復(fù)習(xí) 第三章 三角函數(shù)、解三角形 第四節(jié) y=Asin(ωx+φ)的圖象及應(yīng)用課時(shí)作業(yè)
《2022屆高考數(shù)學(xué)一輪復(fù)習(xí) 第三章 三角函數(shù)、解三角形 第四節(jié) y=Asin(ωx+φ)的圖象及應(yīng)用課時(shí)作業(yè)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022屆高考數(shù)學(xué)一輪復(fù)習(xí) 第三章 三角函數(shù)、解三角形 第四節(jié) y=Asin(ωx+φ)的圖象及應(yīng)用課時(shí)作業(yè)(10頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022屆高考數(shù)學(xué)一輪復(fù)習(xí) 第三章 三角函數(shù)、解三角形 第四節(jié) y=Asin(ωx+φ)的圖象及應(yīng)用課時(shí)作業(yè) 1.將函數(shù)y=cos 2x的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)y=f(x)·cos x的圖象,則f(x)的表達(dá)式可以是( ) A.f(x)=-2sin x B.f(x)=2sin x C.f(x)=sin 2x D.f(x)=(sin 2x+cos 2x) 解析:將y=cos 2x的圖象向左平移個(gè)單位長(zhǎng)度后得y=cos=-sin 2x=-2sin xcos x的圖象,所以f(x)=-2sin x,故選A. 答案:A 2.(2018·福州市質(zhì)檢)要得到函數(shù)f(x)=sin
2、 2x的圖象,只需將函數(shù)g(x)=cos 2x的圖象( ) A.向左平移個(gè)周期 B.向右平移個(gè)周期 C.向左平移個(gè)周期 D.向右平移個(gè)周期 解析:因?yàn)閒(x)=sin 2x=cos(2x-)=cos[2(x-)],且函數(shù)g(x)的周期為=π,所以將函數(shù)g(x)=cos 2x的圖象向右平移個(gè)單位長(zhǎng)度,即向右平移個(gè)周期,得到函數(shù)f(x)=sin 2x的圖象,故選D. 答案:D 3.下列函數(shù)中,最小正周期為π且圖象關(guān)于原點(diǎn)對(duì)稱的函數(shù)是( ) A.y=cos(2x+) B.y=sin(2x+) C.y=sin 2x+cos 2x D.y=sin x+cos x 解析:采用驗(yàn)
3、證法.由y=cos(2x+)=-sin 2x,可知該函數(shù)的最小正周期為π且為奇函數(shù),故選A. 答案:A 4.函數(shù)f(x)=sin ωx(ω>0)的圖象向左平移個(gè)單位長(zhǎng)度,所得圖象經(jīng)過點(diǎn)(,0),則ω的最小值是( ) A. B.2 C.1 D. 解析:依題意得,函數(shù)f(x+)=sin ω(x+)(ω>0)的圖象過點(diǎn)(,0),于是有f(+)=sin ω(+)=sin ωπ=0(ω>0),ωπ=kπ,k∈Z,即ω=k∈Z,因此正數(shù)ω的最小值是1,選C. 答案:C 5.三角函數(shù)f(x)=sin+cos 2x的振幅和最小正周期分別是( ) A., B.,π C., D.,π
4、 解析:f(x)=sin cos 2x-cos sin 2x+cos 2x=cos 2x-sin 2x==cos,故選B. 答案:B 6.(2018·石家莊市質(zhì)檢)已知函數(shù)f(x)=sin(2x+)+cos 2x,則f(x)的一個(gè)單調(diào)遞減區(qū)間是( ) A.[,] B.[-,] C.[-,] D.[-,] 解析:f(x)=sin(2x+)+cos 2x=sin 2x+cos 2x+cos 2x=sin 2x+cos 2x=sin(2x+).由2kπ+≤2x+≤2kπ+(k∈Z),得kπ+≤x≤kπ+(k∈Z),所以f(x)的一個(gè)單調(diào)遞減區(qū)間為[,],故選A. 答案:A 7.
5、將函數(shù)y=cos x+sin x(x∈R)的圖象向左平移m(m>0)個(gè)單位長(zhǎng)度后,所得圖象關(guān)于y軸對(duì)稱,則m的最小值是( ) A. B. C. D. 解析:將函數(shù)y=cos x+sin x=2cos的圖象向左平移m(m>0)個(gè)單位長(zhǎng)度后,所得圖象的函數(shù)解析式為y=2cos.因?yàn)樗玫暮瘮?shù)圖象關(guān)于y軸對(duì)稱,所以m-=kπ(k∈N),即m=kπ+(k∈N),所以m的最小值為,故選B. 答案:B 8.若函數(shù)f(x)=sin ωx-cos ωx,ω>0,x∈R,又f(x1)=2,f(x2)=0,且|x1-x2|的最小值為,則ω的值為( ) A. B. C. D.2 解析:由
6、題意知f(x)=2sin(ωx-),設(shè)函數(shù)f(x)的最小正周期為T,因?yàn)閒(x1)=2,f(x2)=0,所以|x1-x2|的最小值為=,所以T=6π,所以ω=,故選A. 答案:A 9.已知f(x)=2sin(2x+),若將它的圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的圖象的一條對(duì)稱軸的方程為( ) A.x= B.x= C.x= D.x= 解析:由題意知g(x)=2sin[2(x-)+]=2sin(2x-),令2x-=+kπ,k∈Z,解得x=+π,k∈Z,當(dāng)k=0時(shí),x=,即函數(shù)g(x)的圖象的一條對(duì)稱軸的方程為x=,故選C. 答案:C 10.函數(shù)f(x
7、)=sin(x+φ)-2sin φcos x的最大值為________. 解析:因?yàn)閒(x)=sin(x+φ)-2sin φcos x=sin x·cos φ-cos xsin φ=sin(x-φ),-1≤sin(x-φ)≤1,所以f(x)的最大值為1. 答案:1 11.(2018·昆明市檢測(cè))已知函數(shù)f(x)=sin(ωx+)(ω>0),A,B是函數(shù)y=f(x)圖象上相鄰的最高點(diǎn)和最低點(diǎn),若|AB|=2,則f(1)=________. 解析:設(shè)f(x)的最小正周期為T,則由題意,得=2,解得T=4,所以ω===,所以f(x)=sin(x+),所以f(1)=sin(+)=sin=.
8、答案: 12.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象如圖所示,則f(0)的值為________. 解析:由函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象可知,其最小正周期T=2π,則ω=1.又f(-)=sin(-+φ)=0,0<φ<π,∴φ=,∴f(0)=sin=sin(+)=cos=. 答案: 13.已知函數(shù)y=g(x)的圖象由f(x)=sin 2x的圖象向右平移φ(0<φ<π)個(gè)單位長(zhǎng)度得到,這兩個(gè)函數(shù)的部分圖象如圖所示,則φ的值為__________. 解析:函數(shù)f(x)=sin 2x的圖象在y軸右側(cè)的第一條對(duì)稱軸為x=,直線x=
9、關(guān)于x=對(duì)稱的直線為x=.由圖象可知,圖象向右平移之后,橫坐標(biāo)為的點(diǎn)平移到橫坐標(biāo)為的點(diǎn),所以φ=-=. 答案: B組——能力提升練 1.(2018·廣州市檢測(cè))已知函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,0<φ<π)是奇函數(shù),直線y=與函數(shù)f(x)的圖象的兩個(gè)相鄰交點(diǎn)的橫坐標(biāo)之差的絕對(duì)值為,則( ) A.f(x)在(0,)上單調(diào)遞減 B.f(x)在(,)上單調(diào)遞減 C.f(x)在(0,)上單調(diào)遞增 D.f(x)在(,)上單調(diào)遞增 解析:f(x)=sin(ωx+φ)+cos(ωx+φ)=sin(ωx+φ+),因?yàn)?<φ<π且f(x)為奇函數(shù),所以φ=,即f
10、(x)=-sin ωx,又直線y=與函數(shù)f(x)的圖象的兩個(gè)相鄰交點(diǎn)的橫坐標(biāo)之差的絕對(duì)值為,所以函數(shù)f(x)的最小正周期為,由=,可得ω=4,故f(x)=-sin 4x,由2kπ+≤4x≤2kπ+,k∈Z,即+≤x≤+,k∈Z,令k=0,得≤x≤,此時(shí)f(x)在(,)上單調(diào)遞增,故選D. 答案:D 2.將函數(shù)y=sin(2x+φ)(φ>0)的圖象沿x軸向左平移個(gè)單位后,得到一個(gè)偶函數(shù)的圖象,則φ的最小值為( ) A. B. C. D. 解析:將函數(shù)y=sin(2x+φ)(φ>0)的圖象沿x軸向左平移個(gè)單位后,得到一個(gè)偶函數(shù)y=sin =sin的圖象,則由+φ=kπ+,得φ=k
11、π+(k∈Z),所以φ的最小值為,故選C. 答案:C 3.已知函數(shù)f(x)=2sin(ωx+)-1(ω>0)的圖象向右平移個(gè)單位長(zhǎng)度后與原圖象重合,則ω的最小值是( ) A.3 B. C. D. 解析:將f(x)的圖象向右平移個(gè)單位長(zhǎng)度后得到圖象的函數(shù)解析式為y=2sin[ω(x-)+]-1=2sin(ωx-+)-1,所以=2kπ,k∈Z,所以ω=3k,k∈Z,因?yàn)棣?0,k∈Z,所以ω的最小值為3,故選A. 答案:A 4.若關(guān)于x的方程2sin(2x+)=m在[0,]上有兩個(gè)不等實(shí)根,則m的取值范圍是( ) A.(1,) B.[0,2] C.[1,2) D.[1
12、,] 解析:2sin(2x+)=m在[0,]上有兩個(gè)不等實(shí)根等價(jià)于函數(shù)f(x)=2sin(2x+)的圖象與直線y=m有兩個(gè)交點(diǎn).如圖,在同一坐標(biāo)系中作出y=f(x)與y=m的圖象,由圖可知m的取值范圍是[1,2). 答案:C 5.函數(shù)f(x)=cos(2x-)+4cos2x-2-(x∈[-,])所有零點(diǎn)之和為( ) A. B. C.2π D. 解析:函數(shù)f(x)=cos(2x-)+4cos2x-2-(x∈[-,])的零點(diǎn)可轉(zhuǎn)化為函數(shù)g(x)=cos(2x-)+4cos2x-2與h(x)=的交點(diǎn)的橫坐標(biāo)g(x)=cos(2x-)+4cos2x-2=sin 2x+cos 2x
13、=sin(2x+),h(x)==,可得函數(shù)g(x),h(x)的圖象關(guān)于點(diǎn)(,0)對(duì)稱.函數(shù)g(x),h(x)的圖象如圖所示. 結(jié)合圖象可得在區(qū)間[-,]上,函數(shù)g(x),h(x)的圖象有4個(gè)交點(diǎn),且關(guān)于點(diǎn)(,0)對(duì)稱.所有零點(diǎn)之和為2×+2×=,故選B. 答案:B 6.已知函數(shù)f(x)=sin(ωx+φ)的最小正周期為4π,且對(duì)任意x∈R,都有f(x)≤f成立,則f(x)圖象的一個(gè)對(duì)稱中心的坐標(biāo)是( ) A. B. C. D. 解析:由f(x)=sin(ωx+φ)的最小正周期為4π,得ω=.因?yàn)閒(x)≤f恒成立,所以f(x)max=f,即×+φ=+2kπ(k∈Z),所以
14、φ=+2kπ(k∈Z),由|φ|<,得φ=,故f(x)=sin,將各選項(xiàng)代入驗(yàn)證,可知選A. 答案:A 7.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=-為f(x)的零點(diǎn),x=為y=f(x)圖象的對(duì)稱軸,且f(x)在(,)上單調(diào),則ω的最大值為( ) A.11 B.9 C.7 D.5 解析:因?yàn)閤=-為函數(shù)f(x)的零點(diǎn),x=為y=f(x)圖象的對(duì)稱軸,所以=+(k∈Z,T為周期),得T=(k∈Z).又f(x)在(,)上單調(diào),所以T≥,k≤,又當(dāng)k=5時(shí),ω=11,φ=-,f(x)在(,)上不單調(diào);當(dāng)k=4時(shí),ω=9,φ=,f(x)在(,)上單調(diào),滿足題意,故
15、ω=9,即ω的最大值為9. 答案:B 8.(2018·衡水中學(xué)調(diào)研)已知點(diǎn)(a,b)在圓x2+y2=1上,則函數(shù)f(x)=acos2x+bsin xcos x--1的最小正周期和最小值分別為( ) A.2π,- B.π,- C.π,- D.2π,- 解析:因?yàn)辄c(diǎn)(a,b)在圓x2+y2=1上,所以a2+b2=1,可設(shè)a=cos φ,b=sin φ,代入原函數(shù)f(x)=acos2x+bsin xcos x--1,得f(x)=cos φcos2x+sin φsin xcos x-cos φ-1=cos φ(2cos2x-1)+sin φsin 2x-1=cos φcos 2x+si
16、n φsin 2x-1=cos(2x-φ)-1,故函數(shù)f(x)的最小正周期為T==π,函數(shù)f(x)的最小值f(x)min=--1=-,故選B. 答案:B 9.(2018·太原模擬)已知函數(shù)f(x)=sin(ωx+φ)的最小正周期是π,若將f(x)的圖象向右平移個(gè)單位后得到的圖象關(guān)于原點(diǎn)對(duì)稱,則函數(shù)f(x)的圖象( ) A.關(guān)于直線x=對(duì)稱 B.關(guān)于直線x=對(duì)稱 C.關(guān)于點(diǎn)對(duì)稱 D.關(guān)于點(diǎn)對(duì)稱 解析:∵f(x)的最小正周期為π,∴=π, ω=2,∴f(x)的圖象向右平移個(gè)單位后得到g(x)=sin=sin的圖象,又g(x)的圖象關(guān)于原點(diǎn)對(duì)稱,∴-+φ=kπ,k∈Z, ∴φ=+
17、kπ,k∈Z,又|φ|<,∴φ=-,∴f(x)=sin.當(dāng)x=時(shí),2x-=-, ∴A,C錯(cuò)誤;當(dāng)x=時(shí),2x-=,∴B正確,D錯(cuò)誤. 答案:B 10.已知f(x)=sin(ω>0),f=f,且f(x)在區(qū)間上有最小值,無最大值,則ω=__________. 解析:依題意,x==時(shí),y有最小值,即sin=-1,則ω+=2kπ+(k∈Z).所以ω=8k+(k∈Z).因?yàn)閒(x)在區(qū)間上有最小值,無最大值,所以-≤,即ω≤12,令k=0,得ω=. 答案: 11.已知函數(shù)f(x)=cos,其中x∈,若f(x)的值域是,則m的最大值是__________. 解析:由x∈,可知≤3x+≤3m
18、+,∵f=cos=-,且f=cos π=-1,∴要使f(x)的值域是,需要π≤3m+≤,解得≤m≤,即m的最大值是. 答案: 12.已知函數(shù)f(x)=sin ωx+cos ωx(ω>0),x∈R.若函數(shù)f(x)在區(qū)間(-ω,ω)內(nèi)單調(diào)遞增,且函數(shù)y=f(x)的圖象關(guān)于直線x=ω對(duì)稱,則ω的值為________. 解析:f(x)=sin ωx+cos ωx=sin(ωx+),因?yàn)楹瘮?shù)f(x)的圖象關(guān)于直線x=ω對(duì)稱,所以f(ω)=sin(ω2+)=±,所以ω2+=+kπ,k∈Z,即ω2=+kπ,k∈Z,又函數(shù)f(x)在區(qū)間(-ω,ω)內(nèi)單調(diào)遞增,所以ω2+≤, 即ω2≤,取k=0,得ω2=,所以ω=. 答案: 13.已知函數(shù)f(x)=Atan(ωx+φ),y=f(x)的部分圖象如圖,則f=________. 解析:由圖象可知,T=2=, ∴ω=2,∴2×+φ=+kπ,k∈Z. 又|φ|<,∴φ=. 又f(0)=1,∴Atan=1, ∴A=1,∴f(x)=tan, ∴f=tan=tan=. 答案:
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 春七年級(jí)數(shù)學(xué)下冊(cè)41 用表格表示的變量間關(guān)系課件4 (新版)北師大版
- pep新版五年級(jí)上冊(cè)Unit1-第4課時(shí)-B-Lets-talk課件
- 網(wǎng)絡(luò)營(yíng)銷概述課件
- 第五章生產(chǎn)物流管理課件
- 高中語文必修一《包身工》課件
- 幼兒園《冬爺爺?shù)暮印氛n件
- 組織結(jié)構(gòu)診斷報(bào)告
- 人教版初中語文課內(nèi)成語復(fù)習(xí)課件
- 張衡傳知識(shí)點(diǎn)歸納總結(jié)-最實(shí)用課件
- 五年級(jí)上冊(cè)英語ppt課件-M8U1-What-time-does-your-school-start-|外研版三起
- 農(nóng)業(yè)的區(qū)位選擇優(yōu)質(zhì)課比賽1)課件
- 高中語文部編版選擇性必修上冊(cè)《兼愛》課件
- 校園網(wǎng)設(shè)計(jì)方案
- 上海媒介市場(chǎng)分析課件
- 計(jì)算機(jī)網(wǎng)絡(luò)概述(第一章)課件