《2022屆高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 平面解析幾何 第八節(jié) 第三課時(shí) 定點(diǎn)、定值、探索性問(wèn)題課時(shí)作業(yè)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022屆高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 平面解析幾何 第八節(jié) 第三課時(shí) 定點(diǎn)、定值、探索性問(wèn)題課時(shí)作業(yè)(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022屆高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 平面解析幾何 第八節(jié) 第三課時(shí) 定點(diǎn)、定值、探索性問(wèn)題課時(shí)作業(yè)
1.已知?jiǎng)狱c(diǎn)C到點(diǎn)F(1,0)的距離比到直線x=-2的距離小1,動(dòng)點(diǎn)C的軌跡為E.
(1)求曲線E的方程;
(2)若直線l:y=kx+m(km<0)與曲線E相交于A,B兩個(gè)不同點(diǎn),且·=5,證明:直線l經(jīng)過(guò)一個(gè)定點(diǎn).
解析:(1)由題意可得動(dòng)點(diǎn)C到點(diǎn)F(1,0)的距離等于到直線x=-1的距離,
∴曲線E是以點(diǎn)(1,0)為焦點(diǎn),直線x=-1為準(zhǔn)線的拋物線,設(shè)其方程為y2=2px(p>0),∴=1,∴p=2,
∴動(dòng)點(diǎn)C的軌跡E的方程為y2=4x.
(2)設(shè)A(x1,y1),B(x2,y
2、2),
由
得k2x2+(2km-4)x+m2=0,
∴x1+x2=,x1·x2=.
∵·=5,∴x1x2+y1y2=(1+k2)x1x2+km(x1+x2)+m2==5,
∴m2+4km-5k2=0,∴m=k或m=-5k.
∵km<0,∴m=k舍去,
∴m=-5k,滿足Δ=16(1-km)>0,
∴直線l的方程為y=k(x-5),
∴直線l必經(jīng)過(guò)定點(diǎn)(5,0).
2.(2018·昆明市檢測(cè))已知點(diǎn)A,B的坐標(biāo)分別為(-,0),(,0),直線AM,BM相交于點(diǎn)M,且它們的斜率之積是-,點(diǎn)M的軌跡為曲線E.
(1)求曲線E的方程;
(2)過(guò)點(diǎn)F(1,0)作直線l交曲線E于
3、P,Q兩點(diǎn),交y軸于R點(diǎn),若=λ1,=λ2,證明:λ1+λ2為定值.
解析:(1)設(shè)點(diǎn)M(x,y),由已知得·=-(x≠±),
化簡(jiǎn)得曲線E的方程:+y2=1(x≠±).
(2)證明:設(shè)點(diǎn)P,Q,R的坐標(biāo)分別為
P(x1,y1),Q(x2,y2),R(0,y0).
由=λ1,得(x1,y1-y0)=λ1(1-x1,-y1),
所以x1=,y1=,
因?yàn)辄c(diǎn)P在曲線E上,所以()2+()2=1,
化簡(jiǎn)得λ+4λ1+2-2y=0?、伲?
同理,由=λ2,可得x2=,y2=,
代入曲線E的方程化簡(jiǎn)得λ+4λ2+2-2y=0?、冢?
由①②可知λ1,λ2是方程x2+4x+2-2y=0的
4、兩個(gè)實(shí)數(shù)根(Δ>0),
所以λ1+λ2=-4,即λ1+λ2為定值.
3.在平面直角坐標(biāo)系中,已知點(diǎn)A(-,0),B(,0),直線MA,MB交于點(diǎn)M,它們的斜率之積為常數(shù)m(m≠0),且△MAB的面積最大值為,設(shè)動(dòng)點(diǎn)M的軌跡為曲線E.
(1)求曲線E的方程;
(2)過(guò)曲線E外一點(diǎn)Q作E的兩條切線l1,l2,若它們的斜率之積為-1,那么·是否為定值?若是,請(qǐng)求出該值;若不是,請(qǐng)說(shuō)明理由.
解析:(1)設(shè)M(x,y),則由已知得
·=m,即y2=m(x2-3),
即-=1(x≠±).(*)
①當(dāng)m>0時(shí),方程(*)表示雙曲線,此時(shí)△MAB面積不存在最大值(不符合);
②當(dāng)m=-1時(shí)
5、,方程(*)表示圓,此時(shí)△MAB的面積最大值為3(不符合);
③當(dāng)m<0且m≠-1時(shí),方程(*)為橢圓,此時(shí)△MAB的面積最大值為,所以m=-.
此時(shí)所求的方程為+y2=1(x≠±).
(2)設(shè)Q(x0,y0),過(guò)點(diǎn)Q的切線l為y=k(x-x0)+y0,
由消去y得
(1+3k2)x2+6k(y0-kx0)x+3(y0-kx0)2-3=0,
則Δ=36k2(y0-kx0)2-4(1+3k)2·3[(y-kx0)2-1]=0,
化簡(jiǎn)得(3-x)k2+2x0y0k+1-y=0,
于是k1·k2=,由已知斜率之積為-1,
則=-1,則x+y=4(x0≠±),
所以|OQ|=2,于
6、是·=[(2)2-2]=1.
4.已知橢圓C:+=1(a>b>0)的焦點(diǎn)為F1,F(xiàn)2,離心率為,點(diǎn)P為其上一動(dòng)點(diǎn),且三角形PF1F2的面積最大值為,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)若點(diǎn)M,N為C上的兩個(gè)動(dòng)點(diǎn),求常數(shù)m,使·=m時(shí),點(diǎn)O到直線MN的距離為定值,求這個(gè)定值.
解析:(1)依題意知
解得
所以橢圓C的方程為+=1.
(2)設(shè)M(x1,y1),N(x2,y2),則x1x2+y1y2=m,
當(dāng)直線MN的斜率存在時(shí),設(shè)其方程為y=kx+n,則點(diǎn)O到直線MN的距離d== ,
聯(lián)立,得消去y,
得(4k2+3)x2+8knx+4n2-12=0,
由Δ>0得4
7、k2-n2+3>0,則
x1+x2=,x1x2=,
所以x1x2+(kx1+n)(kx2+n)=(k2+1)x1x2+kn(x1+x2)+n2=m,
整理得=12+.
因?yàn)閐= 為常數(shù),則m=0,d= =,
此時(shí)=12滿足Δ>0.
當(dāng)MN⊥x軸時(shí),由m=0得kOM=±1,
聯(lián)立,得消去y,得x2=,點(diǎn)O到直線MN的距離d=|x|=亦成立.
綜上,當(dāng)m=0時(shí),點(diǎn)O到直線MN的距離為定值,這個(gè)定值是.
B組——能力提升練
1.如圖,已知直線l:y=kx+1(k>0)關(guān)于直線y=x+1對(duì)稱的直線為l1,直線l,l1與橢圓E:+y2=1分別交于點(diǎn)A,M和A,N,記直線l1的斜率為k
8、1.
(1)求k·k1的值;
(2)當(dāng)k變化時(shí),試問(wèn)直線MN是否恒過(guò)定點(diǎn)?若恒過(guò)定點(diǎn),求出該定點(diǎn)坐標(biāo);若不恒過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
解析:(1)設(shè)直線l上任意一點(diǎn)P(x,y)關(guān)于直線y=x+1對(duì)稱的點(diǎn)為P0(x0,y0),
直線l與直線l1的交點(diǎn)為(0,1),
∴l(xiāng):y=kx+1,l1:y=k1x+1,k=,k1=,
由=+1,
得y+y0=x+x0+2?、伲?
由=-1,得y-y0=x0-x?、?,
由①②得
kk1=
==1.
(2)由得(4k2+1)x2+8kx=0,
設(shè)M(xM,yM),N(xN,yN),
∴xM=,∴yM=.
同理可得xN==,yN==.
9、
kMN====-,
直線MN:y-yM=kMN(x-xM),
即y-=-(x-),
即y=-x-+=-x-.
∴當(dāng)k變化時(shí),直線MN過(guò)定點(diǎn)(0,-).
2.(2018·合肥市質(zhì)檢)如圖,在平面直角坐標(biāo)系中,點(diǎn)F(-1,0),過(guò)直線l:x=-2右側(cè)的動(dòng)點(diǎn)P作PA⊥l于點(diǎn)A,∠APF的平分線交x軸于點(diǎn)B,|PA|=|BF|.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)F的直線q交曲線C于M,N,試問(wèn):x軸正半軸上是否存在點(diǎn)E,直線EM,EN分別交直線l于R,S兩點(diǎn),使∠RFS為直角?若存在,求出點(diǎn)E的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
解析:(1)設(shè)P(x,y),由平面幾何知識(shí)得=,
10、
即=,
化簡(jiǎn)得x2+2y2=2,
所以動(dòng)點(diǎn)P的軌跡C的方程為x2+2y2=2(x≠).
(2)假設(shè)滿足條件的點(diǎn)E(n,0)(n>0)存在,設(shè)直線q的方程為x=my-1,
M(x1,y1),N(x2,y2),R(-2,y3),S(-2,y4).
聯(lián)立,得消去x,
得(m2+2)y2-2my-1=0,
y1+y2=,y1y2=-,
x1x2=(my1-1)(my2-1)=m2y1y2-m(y1+y2)+1=--+1=,
x1+x2=m(y1+y2)-2=-2=-,
由條件知=,y3=-,
同理y4=-,kRF==-y3,
kSF=-y4.
因?yàn)椤蟁FS為直角,所以y3y
11、4=-1,
所以(2+n)2y1y2=-[x1x2-n(x1+x2)+n2],
(2+n)2=++n2,
所以(n2-2)(m2+1)=0,n=,
故滿足條件的點(diǎn)E存在,其坐標(biāo)為(,0).
3.已知橢圓C:9x2+y2=m2(m>0),直線l不過(guò)原點(diǎn)O且不平行于坐標(biāo)軸,l與C有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M.
(1)證明:直線OM的斜率與l的斜率的乘積為定值;
(2)若l過(guò)點(diǎn)(,m),延長(zhǎng)線段OM與C交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求此時(shí)l的斜率;若不能,說(shuō)明理由.
解析:(1)證明:設(shè)直線l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2
12、),M(xM,yM).
將y=kx+b代入9x2+y2=m2得(k2+9)x2+2kbx+b2-m2=0,
故xM==,yM=kxM+b=.
于是直線OM的斜率kOM==-,
即kOM·k=-9.
所以直線OM的斜率與l的斜率的積是定值.
(2)四邊形OAPB能為平行四邊形.
因?yàn)橹本€l過(guò)點(diǎn)(,m),所以l不過(guò)原點(diǎn)且與C有兩個(gè)交點(diǎn)的充要條件是k>0,k≠3.由(1)得OM的方程為y=-x.
設(shè)點(diǎn)P的橫坐標(biāo)為xP,
由得x=,
即xP=.
將點(diǎn)(,m)的坐標(biāo)代入l的方程得b=,
因此xM=.
四邊形OAPB為平行四邊形,當(dāng)且僅當(dāng)線段AB與線段OP互相平分,即xP=2xM
13、.
于是=2×,
解得k1=4-,k2=4+.因?yàn)閗i>0,ki≠3,i=1,2,
所以當(dāng)l的斜率為4-或4+時(shí),四邊形OAPB為平行四邊形.
4.(2018·長(zhǎng)沙市模擬)已知P(,)在橢圓C:+=1(a>b>0)上,F(xiàn)為右焦點(diǎn),PF垂直于x軸.A,B,C,D為橢圓上四個(gè)動(dòng)點(diǎn),且AC,BD交于原點(diǎn)O.
(1)求橢圓C的方程;
(2)判斷動(dòng)直線l:x+(m-n)y=m+n(m,n∈R)與橢圓C的位置關(guān)系;
(3)設(shè)A(x1,y1),B(x2,y2)滿足=,判斷kAB+kBC的值是否為定值,若是,請(qǐng)求出此定值,并求出四邊形ABCD面積的最大值,否則請(qǐng)說(shuō)明理由.
解析:(1)∵P(,
14、)在橢圓C:+=1(a>b>0)上,∴+=1.①
又F為右焦點(diǎn),PF垂直于x軸,∴=.②
由①②,解得a=2,b=1,∴橢圓C的方程為+y2=1.
(2)將動(dòng)直線l的方程x+(m-n)y=m+n(m,n∈R),
化為(+y-)m+(-y-)n=0.
∵m,n∈R,∴
解得
∴動(dòng)直線l恒過(guò)點(diǎn)P,
∵P在橢圓C上,∴動(dòng)直線l與橢圓C的位置關(guān)系是相切或相交.
(3)∵=,∴4y1y2=x1x2.當(dāng)直線AB的斜率不存在或斜率為0時(shí),不滿足4y1y2=x1x2.
當(dāng)直線AB的斜率存在時(shí),設(shè)直線AB的方程為
y=kx+m,
聯(lián)立,得
得(1+4k2)x2+8kmx+4(m2-1)
15、=0,
∴Δ=(8km)2-4(4k2+1)·4(m2-1)=16(4k2-m2+1)>0(*)
∵4y1y2=x1x2,y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2,
∴(4k2-1)x1x2+4km(x1+x2)+4m2=0,
∴(4k2-1)+4km+4m2=0,
整理得4k2=1,∴k=±.
∵A,B,C,D的位置可輪換,∴直線AB,BC的斜率是或-,
∴kAB+kBC=+(-)=0,為定值.
不妨設(shè)kAB=-,則
設(shè)原點(diǎn)到直線AB的距離為d,則
S△AOB=|AB|·d=·|x2-x1|·===≤=1.
當(dāng)m2=1時(shí)(滿足(*)),S△AOB=1,∴S四邊形ABCD=4S△AOB≤4,
即四邊形ABCD面積的最大值為4.