影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2022屆高考數(shù)學一輪復習 第三章 三角函數(shù)、解三角形 第八節(jié) 正弦定理和余弦定理的應用課時作業(yè)

上傳人:xt****7 文檔編號:105629903 上傳時間:2022-06-12 格式:DOC 頁數(shù):7 大?。?3KB
收藏 版權(quán)申訴 舉報 下載
2022屆高考數(shù)學一輪復習 第三章 三角函數(shù)、解三角形 第八節(jié) 正弦定理和余弦定理的應用課時作業(yè)_第1頁
第1頁 / 共7頁
2022屆高考數(shù)學一輪復習 第三章 三角函數(shù)、解三角形 第八節(jié) 正弦定理和余弦定理的應用課時作業(yè)_第2頁
第2頁 / 共7頁
2022屆高考數(shù)學一輪復習 第三章 三角函數(shù)、解三角形 第八節(jié) 正弦定理和余弦定理的應用課時作業(yè)_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022屆高考數(shù)學一輪復習 第三章 三角函數(shù)、解三角形 第八節(jié) 正弦定理和余弦定理的應用課時作業(yè)》由會員分享,可在線閱讀,更多相關(guān)《2022屆高考數(shù)學一輪復習 第三章 三角函數(shù)、解三角形 第八節(jié) 正弦定理和余弦定理的應用課時作業(yè)(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022屆高考數(shù)學一輪復習 第三章 三角函數(shù)、解三角形 第八節(jié) 正弦定理和余弦定理的應用課時作業(yè) 1.一個大型噴水池的中央有一個強大噴水柱,為了測量噴水柱噴出的水柱的高度,某人在噴水柱正西方向的點A測得水柱頂端的仰角為45°,沿點A向北偏東30°前進100 m到達點B,在B點測得水柱頂端的仰角為30°,則水柱的高度是(  ) A.50 m        B.100 m C.120 m D.150 m 解析:設水柱高度是h m,水柱底端為C,則在△ABC中,∠BAC=60°,AC=h,AB=100,BC=h,根據(jù)余弦定理得,(h)2=h2+1002-2·h·100·cos 60°,即h

2、2+50h-5 000=0,即(h-50)(h+100)=0,即h=50,故水柱的高度是50 m. 答案:A 2.如圖,兩座燈塔A和B與海岸觀察站C的距離相等,燈塔A在觀察站南偏西40°,燈塔B在觀察站南偏東60°,則燈塔A在燈塔B的(  ) A.北偏東10° B.北偏西10° C.南偏東80° D.南偏西80° 解析:由條件及圖可知,∠A=∠CBA=40°,又∠BCD=60°,所以∠CBD=30°,所以∠DBA=10°,因此燈塔A在燈塔B南偏西80°. 答案:D 3.如圖,設A,B兩點在河的兩岸,一測量者在A的同側(cè),在所在的河岸邊選定一點C,測出AC的距離為50 m

3、,∠ACB=45°,∠CAB=105°后,就可以計算出A,B兩點的距離為(  ) A.50 m B.50 m C.25 m D. m 解析:由正弦定理得=, ∴AB===50,故A,B兩點的距離為50 m. 答案:A 4.(2018·昆明市檢測)在△ABC中,已知AB=,AC=,tan∠BAC=-3,則BC邊上的高等于(  ) A.1 B. C. D.2 解析:因為tan∠BAC=-3,所以sin∠BAC=,cos∠BAC=-.由余弦定理,得BC2=AC2+AB2-2AC·AB·cos∠BAC=5+2-2×××(-)=9,所以BC=3,所以S△ABC=AB·ACsin

4、∠BAC=×××=,所以BC邊上的高h===1,故選A. 答案:A 5.(2018·西安模擬)游客從某旅游景區(qū)的景點A處至景點C處有兩條線路.線路1是從A沿直線步行到C,線路2是先從A沿直線步行到景點B處,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處同時出發(fā)勻速步行,甲的速度是乙的速度的倍,甲走線路2,乙走線路1,最后他們同時到達C處.經(jīng)測量,AB=1 040 m,BC=500 m,則sin∠BAC等于__________. 解析:依題意,設乙的速度為x m/s, 則甲的速度為x m/s, 因為AB=1 040,BC=500, 所以=,解得:AC=1 260, 在△ABC

5、中由余弦定理可知cos∠BAC= ===, 所以sin∠BAC===. 答案: 6.如圖所示,在一個坡度一定的山坡AC的頂上有一高度為25 m的建筑物CD,為了測量該山坡相對于水平地面的坡角θ,在山坡的A處測得∠DAC=15°,沿山坡前進50 m到達B處,又測得 ∠DBC=45°,根據(jù)以上數(shù)據(jù)可得cos θ=________. 解析:由∠DAC=15°,∠DBC=45°可得∠BDA=30°,∠DBA=135°,∠BDC=90°-(15°+θ)-30°=45°-θ,由內(nèi)角和定理可得∠DCB=180°-(45°-θ)-45°=90°+θ,根據(jù)正弦定理可得=,即DB=100sin 15

6、°=100×sin(45°-30°)=25(-1),又=,即=,得到cos θ=-1. 答案:-1 7.已知在島A南偏西38°方向,距島A 3海里的B處有一艘緝私艇.島A處的一艘走私船正以10海里/時的速度向島北偏西22°方向行駛,問緝私艇朝何方向以多大速度行駛,恰好用0.5小時能截住該走私船? 解析:如圖,設緝私艇在C處截住走私船,D為島A正南方向上一點,緝私艇的速度為每小時x海里,則BC=0.5x,AC=5海里,依題意,∠BAC=180°-38°-22°=120°,由余弦定理可得BC2=AB2+AC2-2AB·ACcos 120°, 所以BC2=49,BC=0.5x=7,解得x

7、=14. 又由正弦定理得sin∠ABC= ==, 所以∠ABC=38°,又∠BAD=38°,所以BC∥AD, 故緝私艇以每小時14海里的速度向正北方向行駛,恰好用0.5小時截住該走私船. 8.如圖,在△ABC中,∠ABC=90°,AB=,BC=1,P為△ABC內(nèi)一點,∠BPC=90°. (1)若PB=,求PA; (2)若∠APB=150°,求tan∠PBA. 解析:(1)由已知得∠PBC=60°,所以∠PBA=30°. 在△PBA中,由余弦定理得PA2=3+-2××cos 30°=.故PA=. (2)設∠PBA=α,由已知得PB=sin α. 在△PBA中,由正弦

8、定理得,=, 化簡得cos α=4sin α. 所以tan α=,即tan∠PBA=. B組——能力提升練 1.一艘海輪從A處出發(fā),以每小時40海里的速度沿南偏東40°的方向直線航行,30分鐘后到達B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70°,在B處觀察燈塔,其方向是北偏東65°,那么B,C兩點間的距離是(  ) A.10海里 B.10海里 C.20海里 D.20海里 解析:如圖所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,根據(jù)正弦定理得=, 解得BC=10(海里). 答案:A 2.如圖,在山腳A測得山頂P的仰角為

9、α=30°,沿傾斜角β=15°的斜坡向上走a米到B,在B處測得山頂P的仰角γ=60°,則山高h=(  ) A.a米 B.米 C.a米 D.a(chǎn)米 解析:在△PAB中,∠PAB=α-β=15°,∠BPA=(90°-α)-(90°-γ)=γ-α=30°, 所以=,所以PB=a, 所以PQ=PC+CQ=PB·sin γ+asin β =a×sin 60°+asin 15°=a(米). 答案:A 3.如圖,飛機的航線和山頂在同一個鉛垂面內(nèi),若飛機的高度為海拔18 km,速度為1 000 km/h,飛行員先看到山頂?shù)母┙菫?0°,經(jīng)過1 min后又看到山頂?shù)母┙菫?5°,則山頂?shù)暮?/p>

10、拔高度為(精確到0.1 km,參考數(shù)據(jù):≈1.732)(  ) A.8.4 km B.6.6 km C.6.5 km D.5.6 km 解析:因為AB=1 000×= km, 所以BC=·sin 30°=(km). 所以航線離山頂?shù)母叨萮=×sin 75°=×sin(45°+30°)≈11.4 km.所以山高為18-11.4=6.6(km). 答案:B 4.如圖所示,為了測量某湖泊兩側(cè)A,B間的距離,李寧同學首先選定了與A,B不共線的一點C,然后給出了三種測量方案:(△ABC的角A,B,C所對的邊分別記為a,b,c) ①測量A,C,b ②測量a,b,C ③測量A,B

11、,a 則一定能確定A,B間距離的所有方案的個數(shù)為(  ) A.3 B.2 C.1 D.0 解析:對于①,利用內(nèi)角和定理先求出B=π-A-C, 再利用正弦定理=解出c, 對于②,直接利用余弦定理cos C=即可解出c, 對于③,先利用內(nèi)角和定理求出C=π-A-B, 再利用正弦定理=解出c. 答案:A 5.(2018·福州市質(zhì)檢)在距離塔底分別為80 m,160 m,240 m的同一水平面上的A,B,C處,依次測得塔頂?shù)难鼋欠謩e為α,β,γ.若α+β+γ=90°,則塔高為________. 解析:設塔高為h m.依題意得,tan α=,tan β=,tan γ=.因為

12、α+β+γ=90°,所以tan(α+β)tan γ=tan(90°-γ)tan γ===1,所以·tan γ=1,所以·=1,解得h=80,所以塔高為80 m. 答案:80 m 6.(2018·遂寧模擬)海輪“和諧號”從A處以每小時21海里的速度出發(fā),海輪“奮斗號”在A處北偏東45°的方向,且與A相距10海里的C處,沿北偏東105°的方向以每小時9海里的速度行駛,則海輪“和諧號”與海輪“奮斗號”相遇所需的最短時間為__________小時. 解析:設海輪“和諧號”與海輪“奮斗號”相遇所需的最短時間為x小時,如圖,則由已知得△ABC中,AC=10,AB=21x,BC=9x,∠ACB=120

13、°, 由余弦定理得:(21x)2=100+(9x)2-2×10×9x×cos 120°, 整理,得36x2-9x-10=0, 解得x=或x=-(舍). 所以海輪“和諧號”與海輪“奮斗號”相遇所需的最短時間為小時. 答案: 7.如圖,現(xiàn)要在一塊半徑為1 m,圓心角為的扇形白鐵片AOB上剪出一個平行四邊形MNPQ,使點P在弧AB上,點Q在OA上,點M,N在OB上,設∠BOP=θ,平行四邊形MNPQ的面積為S. (1)求S關(guān)于θ的函數(shù)關(guān)系式. (2)求S的最大值及相應的θ角. 解析:(1)分別過P,Q作PD⊥OB于點D,QE⊥OB于點E,則四邊形QEDP為矩形. 由扇形半徑為

14、1 m, 得PD=sin θ,OD=cos θ. 在Rt△OEQ中, OE=QE=PD, MN=QP=DE=OD-OE=cos θ-sin θ, S=MN·PD=·sin θ =sin θcos θ-sin2θ,θ∈. (2)S=sin 2θ-(1-cos 2θ) =sin 2θ+cos 2θ-=sin-, 因為θ∈, 所以2θ+∈,sin∈. 當θ=時,Smax=(m2). 8.(2018·宜賓模擬)一艘海輪從A出發(fā),沿北偏東75°的方向航行(2-2)n mile到達海島B,然后從B出發(fā),沿北偏東15°的方向航行4 n mile到達海島C. (1)求AC的長; (2)如果下次航行直接從A出發(fā)到達C,求∠CAB的大?。? 解析:(1)由題意,在△ABC中, ∠ABC=180°-75°+15°=120°,AB=2-2,BC=4, 根據(jù)余弦定理得 AC2=AB2+BC2-2AB×BC×cos∠ABC =(2-2)2+42+(2-2)×4=24, 所以AC=2. (2)根據(jù)正弦定理得,sin∠BAC==, 所以∠CAB=45°.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!