影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2022年人教A版高中數(shù)學 高三一輪 第八章 平面解析幾何 8-8 曲線與方程《教案》

上傳人:xt****7 文檔編號:105667911 上傳時間:2022-06-12 格式:DOC 頁數(shù):7 大小:180.50KB
收藏 版權(quán)申訴 舉報 下載
2022年人教A版高中數(shù)學 高三一輪 第八章 平面解析幾何 8-8 曲線與方程《教案》_第1頁
第1頁 / 共7頁
2022年人教A版高中數(shù)學 高三一輪 第八章 平面解析幾何 8-8 曲線與方程《教案》_第2頁
第2頁 / 共7頁
2022年人教A版高中數(shù)學 高三一輪 第八章 平面解析幾何 8-8 曲線與方程《教案》_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年人教A版高中數(shù)學 高三一輪 第八章 平面解析幾何 8-8 曲線與方程《教案》》由會員分享,可在線閱讀,更多相關(guān)《2022年人教A版高中數(shù)學 高三一輪 第八章 平面解析幾何 8-8 曲線與方程《教案》(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年人教A版高中數(shù)學 高三一輪 第八章 平面解析幾何 8-8 曲線與方程《教案》 【教學目標】 1.了解方程的曲線與曲線的方程的對應關(guān)系.  2.了解解析幾何的基本思想和利用坐標法研究幾何問題的基本方法. 3.能夠根據(jù)所給條件選擇適當?shù)姆椒ㄇ笄€的軌跡方程. 【重點難點】 1.教學重點:能夠根據(jù)所給條件選擇適當?shù)姆椒ㄇ笄€的軌跡方程; 2.教學難點:學會對知識進行整理達到系統(tǒng)化,提高分析問題和解決問題的能力; 【教學策略與方法】 自主學習、小組討論法、師生互動法 【教學過程】 教學流程 教師活動 學生活動 設計意圖

2、 環(huán)節(jié)二: 考綱傳真: 1.了解方程的曲線與曲線的方程的對應關(guān)系. 2.了解解析幾何的基本思想和利用坐標法研究幾何問題的基本方法.3.能夠根據(jù)所給條件選擇適當?shù)姆椒ㄇ笄€的軌跡方程. 真題再現(xiàn); 【xx高考新課標1卷】設圓

3、的圓心為A,直線l過點B(1,0)且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E. (I)證明為定值,并寫出點E的軌跡方程; (II)設點E的軌跡為曲線C1,直線l交C1于M,N兩點,過B且與l垂直的直線與圓A交于P,Q兩點,求四邊形MPNQ面積的取值范圍. 【解析】(Ⅰ)因為,,故,所以,故.又圓的標準方程為,從而,所以.由題設得,,,由橢圓定義可得點的軌跡方程為:(). (Ⅱ)當與軸不垂直時,設的方程為,,.由得.則,.所以.過點且與垂直的直線:,到的距離為,所以.故四邊形的面積.可得當與軸不垂直時,四邊形面積的取值范圍為. 當與軸垂直時,其方程為,,,四邊

4、形的面積為12.綜上,四邊形面積的取值范圍為. 考點:圓錐曲線綜合問題 知識梳理: 知識點1 曲線與方程的定義 一般地,在直角坐標系中,如果某曲線C上的點與一個二元方程f(x,y)=0的實數(shù)解建立如下的對應關(guān)系: 那么,這個方程叫做曲線的方程,這條曲線叫做方程的曲線. 知識點2 求動點的軌跡方程的基本步驟 1.必會結(jié)論;(1)“曲線C是方程f(x,y)=0的曲線”是“曲線C上的點的坐標都是方程f(x,y)=0的解” 的充分不必要條件. (2)曲線的交點與方程組的關(guān)系: ①兩條曲線交點的坐標是兩個曲線方程的公共解,即兩個曲線方程組成的方程組的實數(shù)解; ②方

5、程組有幾組解,兩條曲線就有幾個交點;方程組無解,兩條曲線就沒有交點. 2.必清誤區(qū);(1)求軌跡方程時,要注意曲線上的點與方程的解是一一對應關(guān)系.檢驗可從以下兩個方面進行:一是方程的化簡是否是同解變形;二是是否符合題目的實際意義. (2)求點的軌跡與軌跡方程是不同的要求,求軌跡時,應先求軌跡方程,然后根據(jù)方程說明軌跡的形狀、位置、大小等. 考點分項突破 考點一:直接法求軌跡方程 1.已知點F(0,1),直線l:y=-1,P為平面上的動點,過點P作直線l的垂線,垂足為Q,且·=·,則動點P的軌跡C的方程為(  ) A.x2=4y       B.y2=3x C.x2=2y

6、 D.y2=4x 【解析】 設點P(x,y),則Q(x,-1).∵·=·,∴(0,y+1)·(-x,2)=(x,y-1)·(x,-2),即2(y+1)=x2-2(y-1),整理得x2=4y,∴動點P的軌跡C的方程為x2=4y.故選A.【答案】 A 2.已知動圓過定點A(4,0),且在y軸上截得弦MN的長為8.求動圓圓心的軌跡C的方程. 【解】 如圖,設動圓圓心為O1(x,y),由題意,得|O1A|=|O1M|.當O1不在y軸上時, 過O1作O1H⊥MN交MN于H,則H是MN的中點, ∴|O1M|=,又|O1A|=, ∴=.化簡得y2=8x(x≠0). 當O1在y

7、軸上時,O1與O重合,點O1的坐標為(0,0)也滿足方程y2=8x,∴動圓圓心的軌跡C的方程為y2=8x. 歸納;利用直接法求軌跡方程的關(guān)鍵和注意點 1.利用直接法求解軌跡方程的關(guān)鍵是根據(jù)條件準確列出方程,然后進行化簡. 2.運用直接法應注意的問題 (1)在用直接法求軌跡方程時,在化簡的過程中,有時破壞了方程的同解性,此時就要補上遺漏的點或刪除多余的點,這是不能忽視的. (2)若方程的化簡過程是恒等變形,則最后的驗證可以省略. 考點二: 定義法求軌跡方程 (1)△ABC的頂點A(-5,0),B(5,0),△ABC的內(nèi)切圓圓心在直線x=3上,則頂點C的軌跡方程是________.

8、 (2)已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡為L,設L上的點與點M(x,y)的距離的最小值為m,點F(0,1)與點M(x,y)的距離為n. ①求圓C的圓心軌跡L的方程; ②求滿足條件m=n的點M的軌跡Q的方程. 【解析】 (1)由題意知|CA|-|CB|=6<10,則頂點C的軌跡是以點A,B為焦點的雙曲線的右支.又2a=6,c=5,則b2=c2-a2=16,從而頂點C的軌跡方程為-=1(x>3).【答案】?。?(x>3) (2)①設圓x2+(y+4)2=1的圓心O(0,-4),圓x2+(y-2)2=1的圓心O′(0,2),圓C的半徑為r,由

9、題意知,|CO|=r+1,|CO′|=r+1,從而|CO|=|CO′|,所以l為線段OO′的垂直平分線,l的方程為y=-1. ②由m=n知,動點M到定點F和定直線l的距離相等.由拋物線的定義知,動點M的軌跡Q是以點F(0,1)為焦點,以直線y=-1為準線的拋物線,且p=2,從而軌跡Q的方程為x2=4y. 跟蹤訓練1.如圖所示,已知C為圓(x+)2+y2=4的圓心,點A(,0),P是圓上的動點,點Q在圓的半徑CP所在的直線上,且·=0,=2.當點P在圓上運動時,求點Q的軌跡方程. 【解】 圓(x+)2+y2=4的圓心為C(-,0),半徑r=2, ∵·=0,=2,∴MQ⊥AP,點M

10、為AP的中點,即QM垂直平分AP.連結(jié)AQ,則|AQ|=|QP|, ∴||QC|-|QA||=||QC|-|QP||=|CP|=r=2.又|AC|=2>2,根據(jù)雙曲線的定義,點Q的軌跡是以C(-,0),A(,0)為焦點,實軸長為2的雙曲線, 由c=,a=1,得b2=1,因此點Q的軌跡方程為x2-y2=1. 歸納:定義法求軌跡方程的適用條件及關(guān)鍵 1.適用條件;動點與定點、定直線之間的某些關(guān)系滿足直線、圓、橢圓、雙曲線、拋物線的定義. 2.關(guān)鍵;定義法求軌跡方程的關(guān)鍵是理解平面幾何圖形的定義. 提醒:弄清各種常見曲線的定義是用定義法求軌跡方程的關(guān)鍵. 考點三: 相關(guān)點(代入)法求軌

11、跡方程 (1)已知長為1+的線段AB的兩個端點A,B分在x軸、y軸上滑動,P是AB上一點,且=,則點P的軌跡方程為________. (2)設直線x-y=4a與拋物線y2=4ax交于兩點A,B(a為定值),C為拋物線上任意一點,求△ABC的重心的軌跡方程. 【解析】 (1)設A(a,0),B(0,b),P(x,y),則 =(x-a,y),=(-x,b-y),由=得(x-a,y)=(-x,b-y),即所以 又a2+b2=3+2,所以+y2=1. 【答案】 +y2=1 (2)設△ABC的重心為G(x,y),點C的坐標為(x0,y0),A(x1,y1),B(x2,y2).由方程組消

12、去y并整理得x2-12ax+16a2=0.∴x1+x2=12a, y1+y2=(x1-4a)+(x2-4a)=(x1+x2)-8a=4a. ∵G(x,y)為△ABC的重心,∴∴ 又點C(x0,y0)在拋物線上,∴將點C的坐標代入拋物線的方程得 (3y-4a)2=4a(3x-12a),即2=(x-4a). 又點C與A,B不重合,∴x≠(6±2)a,∴△ABC的重心的軌跡方程為 2=(x-4a)(x≠(6±2)a). 跟蹤訓練1.P是橢圓+=1(a>b>0)上的任意一點,F(xiàn)1,F(xiàn)2是它的兩個焦點,O為坐標原點,有一動點Q滿足=+,則動點Q的軌跡方程是________. 【解析】 由

13、題意知F1(-c,0),F(xiàn)2(c,0),設P(x0,y0),Q(x,y),由=+得(x,y)=(-c-x0,-y0)+(c-x0,-y0),即 所以又+=1,所以+=1. 【答案】?。? 歸納:相關(guān)點(代入)法的基本步驟 1.設點:設被動點坐標為(x,y),主動點坐標為(x1,y1). 2.求關(guān)系式:求出兩個動點坐標之間的關(guān)系式 3.代換:將上述關(guān)系式代入已知曲線方程,便可得到所求動點的軌跡方程. 。 學生通過對高考真題的解決,發(fā)現(xiàn)自己對知識的掌握情況。

14、 學生通過對高考真題的解決,感受高考題的考察視角。 教師引導學生及時總結(jié),以幫助學生形成完整的認知結(jié)構(gòu)。 引導學生通過對基礎知識的逐點掃描,來澄清概念,加強理解。從而為后面的練習奠定基礎.

15、 在解題中注意引導學生自主分析和解決問題,教師及時點撥從而提高學生的解題能力和興趣。 教師引導學生及時總結(jié),以幫助學生形成完整的認知結(jié)構(gòu)。 通過對考綱的解讀和分析。讓學生明確考試要求,做到有的放矢

16、 由常見問題的解決和總結(jié),使學生形成解題模塊,提高模式識別能力和解題效率。 教師引導學生及時總結(jié),以幫助學生形成完整的認知結(jié)構(gòu)。 引導學生對所學的知識進行小結(jié),由利于學生對已有的知識結(jié)構(gòu)進行編碼處理,加強理解記憶,提高解題技能。 環(huán)節(jié)三: 課堂小結(jié): 1.了解方程的曲線與曲線的方程的對應關(guān)系.  2.了解解析幾何的基本思想和利用坐標法研究幾何問題的基本方法. 3.能夠根據(jù)所給條件選擇適當?shù)姆椒ㄇ笄€的軌跡方程. 學生回顧,總結(jié). 引導學生對學習過程進行反思,為在今后的學習中,進行有效調(diào)控打下良好的基礎。 環(huán)節(jié)四: 課后作業(yè):學生版練與測 學生通過作業(yè)進行課外反思,通過思考發(fā)散鞏固所學的知識。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!