影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

(全國版)2019版高考數(shù)學(xué)一輪復(fù)習(xí) 第5章 數(shù)列 第1講 數(shù)列的概念與簡單表示法學(xué)案

上傳人:彩*** 文檔編號:105672044 上傳時間:2022-06-12 格式:DOC 頁數(shù):12 大小:281.50KB
收藏 版權(quán)申訴 舉報 下載
(全國版)2019版高考數(shù)學(xué)一輪復(fù)習(xí) 第5章 數(shù)列 第1講 數(shù)列的概念與簡單表示法學(xué)案_第1頁
第1頁 / 共12頁
(全國版)2019版高考數(shù)學(xué)一輪復(fù)習(xí) 第5章 數(shù)列 第1講 數(shù)列的概念與簡單表示法學(xué)案_第2頁
第2頁 / 共12頁
(全國版)2019版高考數(shù)學(xué)一輪復(fù)習(xí) 第5章 數(shù)列 第1講 數(shù)列的概念與簡單表示法學(xué)案_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(全國版)2019版高考數(shù)學(xué)一輪復(fù)習(xí) 第5章 數(shù)列 第1講 數(shù)列的概念與簡單表示法學(xué)案》由會員分享,可在線閱讀,更多相關(guān)《(全國版)2019版高考數(shù)學(xué)一輪復(fù)習(xí) 第5章 數(shù)列 第1講 數(shù)列的概念與簡單表示法學(xué)案(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第1講 數(shù)列的概念與簡單表示法 板塊一 知識梳理·自主學(xué)習(xí) [必備知識] 考點1 數(shù)列的定義 按照一定順序排列的一列數(shù)稱為數(shù)列,數(shù)列中的每一個數(shù)叫做這個數(shù)列的項. 考點2 數(shù)列的分類 考點3 數(shù)列的表示法 數(shù)列有三種表示法,它們分別是列表法、圖象法和解析法. 考點4 數(shù)列的通項公式 如果數(shù)列{an}的第n項與序號n之間的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的通項公式. [必會結(jié)論] 1.若數(shù)列{an}的前n項和為Sn,通項公式為an, 則an= 2.在數(shù)列{an}中,若an最大,則 若an最小,則 3.?dāng)?shù)列與函數(shù)的關(guān)系 數(shù)列是一種特

2、殊的函數(shù),即數(shù)列是一個定義在非零自然數(shù)集或其子集上的函數(shù),當(dāng)自變量依次從小到大取值時所對應(yīng)的一列函數(shù)值,就是數(shù)列. [考點自測] 1.判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“×”) (1)根據(jù)數(shù)列的前幾項歸納出數(shù)列的通項公式可能不止一個.(  ) (2)數(shù)列:1,0,1,0,1,0,…,通項公式只能是an=.(  ) (3)如果數(shù)列{an}的前n項和為Sn,則對?n∈N*,都有an+1=Sn+1-Sn.(  ) (4)若數(shù)列用圖象表示,則從圖象上看都是一群孤立的點.(  ) 答案 (1)√ (2)× (3)√ (4)√ 2.[課本改編]數(shù)列1,,,,,…的一個通項公式a

3、n是(  ) A. B. C. D. 答案 B 解析 由已知得,數(shù)列可寫成,,,…,故該數(shù)列的一個通項公式為.故選B. 3.[課本改編]在數(shù)列{an}中,a1=1,anan-1=an-1+(-1)n(n≥2,n∈N*),則的值是(  ) A. B. C. D. 答案 C 解析 由已知得a2=1+(-1)2=2,∴2a3=2+(-1)3,a3=,∴a4=+(-1)4,a4=3,∴3a5=3+(-1)5,∴a5=,∴=×=.故選C. 4.已知f(1)=3,f(n+1)=(n∈N*).則f(4)=________. 答案  解析 由f(1)=3,得f(2)=2,f(3

4、)=,f(4)=. 5.[2018·山東師大附中月考]已知數(shù)列{an}的前n項和Sn=,則a5+a6=________. 答案  解析 a5+a6=S6-S4=-=-=. 6.[課本改編]在數(shù)列{an}中,a1=2,an+1=an+,則數(shù)列an=________. 答案 3- 解析 由題意,得an+1-an==-, an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1 =++…+++2=3-. 板塊二 典例探究·考向突破 考向 由數(shù)列的前幾項求數(shù)列的通項公式 例 1 寫出下面各數(shù)列的一個通項公式: (1)-1,7,-13,19,…; (2),

5、1,,,…; (3),,-,,-,,…; (4)1,3,6,10,15,…; (5)3,33,333,3333,…. 解 (1)符號問題可通過(-1)n或(-1)n+1表示,其各項的絕對值的排列規(guī)律為:后面的數(shù)的絕對值總比前面數(shù)的絕對值大6,故通項公式為an=(-1)n(6n-5). (2)將數(shù)列統(tǒng)一為,,,,…,對于分子3,5,7,9,…,是序號的2倍加1,可得分子的通項公式為bn=2n+1,對于分母2,5,10,17,…,聯(lián)想到數(shù)列1,4,9,16,…,即數(shù)列{n2},可得分母的通項公式為cn=n2+1,因此可得它的一個通項公式為an=. (3)各項的分母分別為21,22,23

6、,24,…,易看出第2,3,4項的分子分別比分母少3.因此把第1項變?yōu)椋瓟?shù)列可化為-,,-,,…, 所以an=(-1)n·. (4)將數(shù)列改寫為,,,,,…,因而有an=,也可用逐差法a2-a1=2,a3-a2=3,a4-a3=4,a5-a4=5,…,an-an-1=n,各式累加得an=. (5)將數(shù)列各項改寫為,,,,…,分母都是3,而分子分別是10-1,102-1,103-1,104-1,…,所以an=(10n-1). 觸類旁通 觀察法求通項公式的常用技巧 求數(shù)列的通項公式實際上是尋找數(shù)列的第n項與序號n之間的關(guān)系,常用技巧有:(1)借助于(-1)n或(-1)n+1來解決項

7、的符號問題;(2)項為分?jǐn)?shù)的數(shù)列,可進行恰當(dāng)?shù)淖冃危瑢ふ曳肿?、分母各自的?guī)律以及分子、分母間的關(guān)系;(3)對較復(fù)雜的數(shù)列的通項公式的探求,可采用添項、還原、分割等方法,轉(zhuǎn)化為熟知的數(shù)列,如等差數(shù)列、等比數(shù)列等來解決. 考向 由an與Sn的關(guān)系求通項an 例 2 (1)已知數(shù)列{an}的前n項和Sn=2n2-3n,則an=________. 答案 4n-5 解析 (1)a1=S1=2-3=-1, 當(dāng)n≥2時,an=Sn-Sn-1=(2n2-3n)-[2(n-1)2-3(n-1)]=4n-5, 由于a1也適合此等式,∴an=4n-5. (2)設(shè)Sn為數(shù)列{an}的前n項的和,

8、且Sn=(an-1)(n∈N*),則an=________. 答案 3n 解析 當(dāng)n≥2時,an=Sn-Sn-1=(an-1)-(an-1-1),整理,得an=3an-1,即=3,又a1=3,∴數(shù)列{an}是以3為首項,3為公比的等比數(shù)列,∴an=3n. (3)已知數(shù)列{an},滿足a1+2a2+3a3+…+nan=2n,則an=________. 答案  解析 當(dāng)n=1時,由已知,可得a1=21=2, 當(dāng)n≥2時,a1+2a2+3a3+…+nan=2n, ① 故a1+2a2+3a3+…+(n-1)an-1=2n-1,?、? 由①-②得nan=2n-2n-1=2n-1,∴an=.

9、 顯然n=1時不滿足上式,∴an= 觸類旁通 給出Sn與an的遞推關(guān)系,求an的常用思路:一是利用Sn-Sn-1=an(n≥2)轉(zhuǎn)化為an的遞推關(guān)系,再求其通項公式;二是轉(zhuǎn)化為Sn的遞推關(guān)系,先求出Sn與n之間的關(guān)系,再求an. 【變式訓(xùn)練】 (1)已知數(shù)列{an}的前n項和Sn=3n+1,則an=________. 答案  解析 當(dāng)n=1時,a1=S1=3+1=4; 當(dāng)n≥2時,an=Sn-Sn-1=(3n+1)-(3n-1+1)=2×3n-1. 當(dāng)n=1時,2×31-1=2≠a1, 所以an= (2)[2018·廣州模擬]設(shè)數(shù)列{an}滿足a1+3a2+32

10、a3+…+3n-1an=,則an=________. 答案  解析 因為a1+3a2+32a3+…+3n-1an=,① 則當(dāng)n≥2時, a1+3a2+32a3+…+3n-2an-1=,② ①-②得3n-1an=,所以an=(n≥2). 由題意知a1=,符合上式,所以an=. (3)已知數(shù)列{an}的前n項和為Sn,a1=1,Sn=2an+1,則Sn=________. 答案 n-1 解析 由已知Sn=2an+1,得Sn=2(Sn+1-Sn), 即2Sn+1=3Sn,=,而S1=a1=1, 所以Sn=n-1. 考向 由遞推公式求數(shù)列的通項公式 命題角度1 形如an+

11、1=anf(n),求an 例 3 在數(shù)列{an}中,a1=4,nan+1=(n+2)an,求數(shù)列{an}的通項公式. 解 由遞推關(guān)系得=, 又a1=4, ∴an=··…···a1=···…···4=·4=2n(n+1)(n∈N*). 命題角度2 形如an+1=an+f(n),求an 例 4 (1)[2015·江蘇高考]設(shè)數(shù)列{an}滿足a1=1,且an+1-an=n+1(n∈N*),求數(shù)列前10項的和. 解 由題意可得,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=1+2+3+…+n=,則==2,數(shù)列的前10項的和為++…+=2=. (2)若數(shù)列{an}滿

12、足:a1=1,an+1=an+2n,求數(shù)列{an}的通項公式. 解 由題意知an+1-an=2n, an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2n-1+2n-2+…+2+1==2n-1. 命題角度3 形如an+1=Aan+B(A≠0且A≠1),求an 例 5 已知數(shù)列{an}中,a1=1,an+1=2an+3,求an. 解 設(shè)遞推公式an+1=2an+3可以轉(zhuǎn)化為an+1-t=2(an-t),即an+1=2an-t,解得t=-3. 故遞推公式為an+1+3=2(an+3). 令bn=an+3,則b1=a1+3=4,且==2. 所以{bn}是以b

13、1=4為首項,2為公比的等比數(shù)列. 所以bn=4×2n-1=2n+1,即an=2n+1-3. 命題角度4 形如an+1=(A,B,C為常數(shù)),求an 例 6 已知數(shù)列{an}中,a1=1,an+1=,求數(shù)列{an}的通項公式. 解 ∵an+1=,a1=1,∴an≠0, ∴=+,即-=,又a1=1,則=1, ∴是以1為首項,為公差的等差數(shù)列, ∴=+(n-1)×=,∴an=(n∈N*). 觸類旁通 由遞推關(guān)系式求通項公式的常用方法 (1)已知a1且an-an-1=f(n),可用“累加法”求an. (2)已知a1且=f(n),可用“累乘法”求an. (3)已知a

14、1且an+1=qan+b,則an+1+k=q(an+k)(其中k可由待定系數(shù)法確定),可轉(zhuǎn)化為等比數(shù)列{an+k}. (4)形如an+1=(A,B,C為常數(shù))的數(shù)列,可通過兩邊同時取倒數(shù)的方法構(gòu)造新數(shù)列求解. 核心規(guī)律 已知遞推關(guān)系求通項,一般有以下方法: (1)算出前幾項,再歸納、猜想; (2)累加法、累乘法、待定系數(shù)法. 滿分策略 1.數(shù)列是一種特殊的函數(shù),在利用函數(shù)觀點研究數(shù)列時, 一定要注意自變量的取值,如數(shù)列an=f(n)和函數(shù)y=f(x)的單調(diào)性是不同的. 2.數(shù)列的通項公式不一定唯一. 3.在利用數(shù)列的前n項和求通項時,往往容易忽略先求出a1,

15、而是直接把數(shù)列的通項公式寫成an=Sn-Sn-1的形式,但它只適用于n≥2的情形. 板塊三 啟智培優(yōu)·破譯高考 數(shù)學(xué)思想系列6——用函數(shù)思想解決數(shù)列的單調(diào)性問題 [2018·南京段考]數(shù)列{an}的通項公式是an=n2+kn+4. (1)若k=-5,則數(shù)列中有多少項是負(fù)數(shù)?n為何值時,an有最小值?并求出最小值. (2)對于n∈N*,都有an+1>an.求實數(shù)k的取值范圍. 解題視點 (1)求使an<0的n值;從二次函數(shù)看an的最小值.(2)數(shù)列是一類特殊函數(shù),通項公式可以看作相應(yīng)的解析式f(n)=n2+kn+4.f(n)在N*上單調(diào)遞增,可利用二次函數(shù)的對稱軸研究單調(diào)性,

16、但應(yīng)注意數(shù)列通項中n的取值. 解 (1)由n2-5n+4<0,解得1an知該數(shù)列是一個遞增數(shù)列, 又因為通項公式an=n2+kn+4, 可以看作是關(guān)于n的二次函數(shù),考慮到n∈N*, 所以-<,即得k>-3. 答題啟示 (1)在利用二次函數(shù)的觀點解決該題時,一定要注意二次函數(shù)對稱軸位置的選取.,(2)本題易錯答案為k>-2.原因是忽略了數(shù)列作為函數(shù)的特殊性,即自變量是正整數(shù).

17、 跟蹤訓(xùn)練 已知數(shù)列{an}中,an=1+(n∈N*,a∈R,且a≠0). (1)若a=-7,求數(shù)列{an}中的最大項和最小項的值; (2)若對任意的n∈N*,都有an≤a6成立,求a的取值范圍. 解 (1)∵an=1+(n∈N*,a∈R,且a≠0), 又∵a=-7,∴an=1+. 結(jié)合函數(shù)f(x)=1+的單調(diào)性,可知1>a1>a2>a3>a4,a5>a6>a7>…>an>1(n∈N*). ∴數(shù)列{an}中的最大項為a5=2,最小項為a4=0. (2)an=1+=1+. ∵對任意的n∈N*,都有an≤a6成立, 結(jié)合函數(shù)f(x)=1+的單調(diào)性, 知5<<6,∴-10

18、

19、選D. 3.[2018·濟寧模擬]若Sn為數(shù)列{an}的前n項和,且Sn=,則等于(  ) A. B. C. D.30 答案 D 解析 ∵當(dāng)n≥2時,an=Sn-Sn-1=-=,∴=5×(5+1)=30.故選D. 4.已知數(shù)列{an}滿足a1=1,an+1an=2n(n∈N*),則a10=(  ) A.64 B.32 C.16 D.8 答案 B 解析 ∵an+1an=2n,∴an+2an+1=2n+1,兩式相除得=2.又a1a2=2,a1=1,∴a2=2. 則···=24,即a10=25=32.故選B. 5.在各項均為正數(shù)的數(shù)列{an}中,對任意m,n∈N*,都

20、有am+n=am·an.若a6=64,則a9等于(  ) A.256 B.510 C.512 D.1024 答案 C 解析 在各項均為正數(shù)的數(shù)列{an}中,對任意m,n∈N*,都有am+n=am·an.∴a6=a3·a3=64,a3=8. ∴a9=a6·a3=64×8,a9=512.故選C. 6.[2018·遼寧實驗中學(xué)月考]設(shè)數(shù)列{an}的前n項和為Sn,且Sn=2(an-1),則an=(  ) A.2n B.2n-1 C.2n D.2n-1 答案 C 解析 當(dāng)n=1時,a1=S1=2(a1-1),可得a1=2;當(dāng)n≥2時,an=Sn-Sn-1=2an-2an-1

21、,∴an=2an-1,∴an=2·2n-1=2n.選C. 7.若數(shù)列{an}的前n項和Sn=n2-10n(n∈N*),則數(shù)列{nan}中數(shù)值最小的項是(  ) A.第2項 B.第3項 C.第4項 D.第5項 答案 B 解析 ∵Sn=n2-10n,∴當(dāng)n≥2時,an=Sn-Sn-1=2n-11; 當(dāng)n=1時,a1=S1=-9也適合上式. ∴an=2n-11(n∈N*). 記f(n)=nan=n(2n-11)=2n2-11n,此函數(shù)圖象的對稱軸為直線n=,但n∈N*,∴當(dāng)n=3時,f(n)取最小值.于是,數(shù)列{nan}中數(shù)值最小的項是第3項.故選B. 8.已知數(shù)列{an}中,

22、a1=1,若an=2an-1+1(n≥2),則a5的值是________. 答案 31 解析 ∵an=2an-1+1,∴an+1=2(an-1+1), ∴=2,又a1=1,∴{an+1}是以2為首項,2為公比的等比數(shù)列,即an+1=2×2n-1=2n,∴a5+1=25,即a5=31. 9.[2018·洛陽模擬]數(shù)列{an}中,a1=1,對于所有的n≥2,n∈N*,都有a1·a2·a3·…·an=n2,則a3+a5=________. 答案  解析 由題意知:a1·a2·a3·…·an-1=(n-1)2, 所以an=2(n≥2), 所以a3+a5=2+2=. 10.[2015·

23、全國卷Ⅱ]設(shè)Sn是數(shù)列{an}的前n項和,且a1=-1,an+1=SnSn+1,則Sn=________. 答案?。? 解析 ∵an+1=Sn+1-Sn,∴Sn+1-Sn=Sn+1Sn,又由a1=-1,知Sn≠0,∴-=1,∴是等差數(shù)列,且公差為-1,而==-1, ∴=-1+(n-1)×(-1)=-n,∴Sn=-. [B級 知能提升] 1.[2018·天津模擬]已知正數(shù)數(shù)列{an}中,a1=1,(n+2)·a-(n+1)a+anan+1=0,n∈N*,則它的通項公式為(  ) A.a(chǎn)n= B.a(chǎn)n= C.a(chǎn)n= D.a(chǎn)n=n 答案 B 解析 由題意可得=,則an=··…

24、··a1=··…·×1=.故選B. 2.已知數(shù)列{an}的通項公式為an=,若數(shù)列{an}為遞減數(shù)列,則實數(shù)k的取值范圍為(  ) A.(3,+∞) B.(2,+∞) C.(1,+∞) D.(0,+∞) 答案 D 解析 因為an+1-an=-=,由數(shù)列{an}為遞減數(shù)列知,對任意n∈N*,an+1-an=<0, 所以k>3-3n對任意n∈N*恒成立,所以k∈(0,+∞).故選D. 3.[2018·重慶模擬]數(shù)列{an}滿足an+1= a1=,則數(shù)列的第2018項為_______. 答案  解析 ∵a1=,∴a2=2a1-1=. ∴a3=2a2=.∴a4=2a3=.

25、 ∴a5=2a4-1=,a6=2a5-1=,…. ∴該數(shù)列周期為T=4.∴a2018=a2=. 4.已知a1+2a2+22a3+…+2n-1an=9-6n,求數(shù)列{an}的通項公式. 解 令Sn=a1+2a2+22a3+…+2n-1an,則Sn=9-6n, 當(dāng)n=1時,a1=S1=3; 當(dāng)n≥2時,2n-1an=Sn-Sn-1=-6, ∴an=-.而n=1時,a1=3,不符合上式, ∴通項公式an= 5.[2018·貴陽模擬]已知在數(shù)列{an}中,a1=1,前n項和Sn=an. (1)求a2,a3; (2)求{an}的通項公式. 解 (1)由S2=a2,得3(a1+a2)=4a2, 解得a2=3a1=3; 由S3=a3,得3(a1+a2+a3)=5a3, 解得a3=(a1+a2)=6. (2)由題設(shè)知a1=1. 當(dāng)n>1時,有an=Sn-Sn-1=an-an-1, 整理,得an=an-1. 于是a1=1,a2=a1,a3=a2,…, an-1=an-2,an=an-1. 將以上n個等式兩端分別相乘,整理,得an=. 綜上,{an}的通項公式an=. 12

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!