影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

(浙江專(zhuān)用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題五 函數(shù)與導(dǎo)數(shù)、不等式學(xué)案

上傳人:彩*** 文檔編號(hào):105849484 上傳時(shí)間:2022-06-12 格式:DOC 頁(yè)數(shù):127 大?。?.31MB
收藏 版權(quán)申訴 舉報(bào) 下載
(浙江專(zhuān)用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題五 函數(shù)與導(dǎo)數(shù)、不等式學(xué)案_第1頁(yè)
第1頁(yè) / 共127頁(yè)
(浙江專(zhuān)用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題五 函數(shù)與導(dǎo)數(shù)、不等式學(xué)案_第2頁(yè)
第2頁(yè) / 共127頁(yè)
(浙江專(zhuān)用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題五 函數(shù)與導(dǎo)數(shù)、不等式學(xué)案_第3頁(yè)
第3頁(yè) / 共127頁(yè)

下載文檔到電腦,查找使用更方便

118 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《(浙江專(zhuān)用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題五 函數(shù)與導(dǎo)數(shù)、不等式學(xué)案》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專(zhuān)用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題五 函數(shù)與導(dǎo)數(shù)、不等式學(xué)案(127頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、專(zhuān)題五 函數(shù)與導(dǎo)數(shù)、不等式 [析考情·明重點(diǎn)] 小題考情分析 大題考情分析 ??键c(diǎn) 1.函數(shù)的概念及其表示(5年3考) 2.函數(shù)圖象與性質(zhì)及其應(yīng)用(5年4考) 3.線性規(guī)劃問(wèn)題(5年5考) 4.函數(shù)與不等式問(wèn)題(5年5考) 函數(shù)與導(dǎo)數(shù)、不等式此部分內(nèi)容是高考必考部分. (1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值等問(wèn)題是高考命題的熱點(diǎn). (2)重點(diǎn)考查導(dǎo)數(shù)與極值、最值、單調(diào)區(qū)間、函數(shù)與圖象的聯(lián)系,利用導(dǎo)數(shù)證明不等式,求函數(shù)零點(diǎn)等. (3)有時(shí)結(jié)合二次函數(shù)考查函數(shù)的最值、零點(diǎn)等問(wèn)題. 偶考點(diǎn) 1.基本初等函數(shù)的運(yùn)算 2.函數(shù)與方程 3.不等式的性質(zhì) 4.利

2、用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值問(wèn)題 5.導(dǎo)數(shù)的幾何意義 第一講 小題考法——函數(shù)的概念與性質(zhì) 考點(diǎn)(一) 函數(shù)的概念及表示 主要考查函數(shù)的定義域、分段函數(shù)求值或已知函數(shù)值(取值范圍)求參數(shù)的值(取值范圍)等. [典例感悟] [典例] (1)(2015·浙江高考)存在函數(shù)f(x)滿(mǎn)足:對(duì)于任意x∈R都有(  ) A.f(sin 2x)=sin x   B.f(sin 2x)=x2+x C.f(x2+1)=|x+1| D.f(x2+2x)=|x+1| (2)(2019屆高三·浙江鎮(zhèn)海中學(xué)階段測(cè)試)函數(shù)y=的定義域是(  ) A.(-1,3) B.(-

3、1,3] C.(-1,0)∪(0,3) D.(-1,0)∪(0,3] (3)設(shè)函數(shù)f(x)=則f(f(-4))=________;若f(t)≥1,則log(t4+1)的最大值為_(kāi)_______. [解析] (1)取x=0,,可得f(0)=0,1,這與函數(shù)的定義矛盾,所以選項(xiàng)A錯(cuò)誤; 取x=0,π,可得f(0)=0,π2+π,這與函數(shù)的定義矛盾,所以選項(xiàng)B錯(cuò)誤; 取x=1,-1,可得f(2)=2,0,這與函數(shù)的定義矛盾,所以選項(xiàng)C錯(cuò)誤; 取f(x)= ,則對(duì)任意x∈R都有f(x2+2x)= =|x+1|,故選項(xiàng)D正確. 綜上可知,本題選D. (2)由題可知即 解得-1

4、3且x≠0,故選D. (3)f(-4)=15,f(15)=, 所以f(f(-4))=. 由f(t)≥1,得t≥1或t≤-1, 所以log(t4+1)≤log2=-1. 故log(t4+1)的最大值為-1. [答案] (1)D (2)D (3)?。? [方法技巧] 1.函數(shù)定義域的求法 求函數(shù)的定義域,其實(shí)質(zhì)就是以函數(shù)解析式所含運(yùn)算有意義為準(zhǔn)則,列出不等式或不等式組,然后求出解集即可. 2.分段函數(shù)問(wèn)題的5種常見(jiàn)類(lèi)型及解題策略 常見(jiàn)類(lèi)型 解題策略 求函數(shù)值 弄清自變量所在區(qū)間,然后代入對(duì)應(yīng)的解析式,求“層層套”的函數(shù)值,要從最內(nèi)層逐層往外計(jì)算 求函數(shù)最值 分別求出

5、每個(gè)區(qū)間上的最值,然后比較大小 解不等式 根據(jù)分段函數(shù)中自變量取值范圍的界定,代入相應(yīng)的解析式求解,但要注意取值范圍的大前提 求參數(shù) “分段處理”,采用代入法列出各區(qū)間上的方程 利用函數(shù) 性質(zhì)求值 必須依據(jù)條件找到函數(shù)滿(mǎn)足的性質(zhì),利用該性質(zhì)求解 [演練沖關(guān)] 1.已知函數(shù)f(x)=+bcosx+x,且滿(mǎn)足f(1-)=3,則f(1+)=(  ) A.2           B.-3 C.-4 D.-1 解析:選D 當(dāng)x1+x2=2時(shí),f(x1)+f(x2)=+bcos+x1++bcos+x2=+bcos+x1++bcos+x2=x1+x2=2.所以函數(shù)y=

6、f(x)的圖象關(guān)于(1,1)對(duì)稱(chēng),從而f(1+)=2-f(1-)=2-3=-1,故選D. 2.(2018·杭州七校聯(lián)考)已知函數(shù)f(x)=若f(2-a2)>f(|a|),則實(shí)數(shù)a的取值范圍是(  ) A.(-1,1) B.(-1,0) C.(0,1) D.(-2,2) 解析:選A 由題意知,f(x)=作出函數(shù)f(x)的大致圖象如圖所示,由函數(shù)f(x)的圖象可知,函數(shù)f(x)在R上單調(diào)遞增,由f(2-a2)>f(|a|),得2-a2>|a|.當(dāng)a≥0時(shí),有2-a2>a,即(a+2)(a-1)<0,解得-2-a,即(a-2)(a+1

7、)<0,解得-1

8、函數(shù)f(x)=2ln x,g(x)=x2-4x+5,則方程f(x)=g(x)的根的個(gè)數(shù)為(  ) A.0          B.1 C.2 D.3 (3)函數(shù)f(x)是定義在[-4,4]上的偶函數(shù),其在[0,4]上的圖象如圖所示,那么不等式<0的解集為_(kāi)_______. [解析] (1)由y=2|x|sin 2x知函數(shù)的定義域?yàn)镽, 令f(x)=2|x|sin 2x, 則f(-x)=2|-x|sin(-2x)=-2|x|sin 2x. ∵f(x)=-f(-x), ∴f(x)為奇函數(shù). ∴f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),故排除A、B. 令f(x)=2|x|sin 2x=0,解

9、得x=(k∈Z), ∴當(dāng)k=1時(shí),x=,故排除C,選D. (2)由已知g(x)=(x-2)2+1,得其頂點(diǎn)為(2,1),又f(2)=2ln 2∈(1,2),可知點(diǎn)(2,1)位于函數(shù)f(x)=2ln x圖象的下方,故函數(shù)f(x)=2ln x的圖象與函數(shù)g(x)=x2-4x+5的圖象有2個(gè)交點(diǎn). (3)在上y=cos x>0, 在上y=cos x<0. 由f(x)的圖象知在上<0, 因?yàn)閒(x)為偶函數(shù),y=cos x也是偶函數(shù), 所以y=為偶函數(shù), 所以<0的解集為∪. [答案] (1)D (2)C (3)∪ [方法技巧] 由函數(shù)解析式識(shí)別函數(shù)圖象的策略 [演練沖關(guān)]

10、 1.(2019屆高三·浙江聯(lián)盟聯(lián)考)已知函數(shù)f(x)滿(mǎn)足f(x)=-f(x-1),則函數(shù)f(x)的圖象不可能發(fā)生的情形是(  ) 解析:選C ∵f(x)=-f(x-1), ∴f(x)的圖象向右平移一個(gè)單位后,再沿x軸對(duì)折后與原圖重合,顯然C不符合題意,故選C. 2.(2018·臺(tái)州調(diào)研)已知函數(shù)f(x)=x(1+a|x|)(a∈R),則在同一個(gè)坐標(biāo)系下函數(shù)f(x+a)與f(x)的圖象不可能是(  ) 解析:選D 首先函數(shù)y=f(x)的圖象過(guò)坐標(biāo)原點(diǎn).當(dāng)a>0時(shí),y=f(x+a)的圖象是由y=f(x)的圖象向左平移后得到的,且函數(shù)f(x)在R上單調(diào)遞增,此時(shí)選項(xiàng)B有可能,選項(xiàng)

11、D不可能;當(dāng)a<0時(shí),y=f(x+a)的圖象是由y=f(x)的圖象向右平移后得到的,且函數(shù)f(x)在上為正,在上為負(fù),此時(shí)選項(xiàng)A、C均有可能,故選D. 3.(2018·浙江教學(xué)質(zhì)量檢測(cè))已知函數(shù)f(x)=,下列關(guān)于函數(shù)f(x)的研究:①y=f(x)的值域?yàn)镽;②y=f(x)在(0,+∞)上單調(diào)遞減;③y=f(x)的圖象關(guān)于y軸對(duì)稱(chēng);④y=f(x)的圖象與直線y=ax(a≠0)至少有一個(gè)交點(diǎn). 其中,結(jié)論正確的序號(hào)是________. 解析:函數(shù)f(x)==其圖象如圖所示,由圖象知f(x)的值域?yàn)?-∞,-1)∪(0,+∞),故①錯(cuò)誤;在區(qū)間(0,1)和(1,+∞)上單調(diào)遞減,故②錯(cuò)誤

12、; ③y=f(x)的圖象關(guān)于y軸對(duì)稱(chēng)正確; 因?yàn)楹瘮?shù)在每個(gè)象限都有圖象,故④y=f(x)的圖象與直線y=ax(a≠0)至少有一個(gè)交點(diǎn)正確. 答案:③④ 考點(diǎn)(三) 函數(shù)的性質(zhì)及應(yīng)用 主要考查函數(shù)的單調(diào)性、奇偶性、周期性、對(duì)稱(chēng)性以及函數(shù)值的取值范圍、比較大小等. [典例感悟] [典例] (1)(2018·杭州二模)設(shè)函數(shù)f(x)與g(x)的定義域均為R,且f(x)單調(diào)遞增,F(xiàn)(x)=f(x)+g(x),G(x)=f(x)-g(x),若對(duì)任意x1,x2∈R(x1≠x2),不等式[f(x1)-f(x2)]2>[g(x1)-g(x2)]2恒成立,則(  ) A.F(x

13、),G(x)都是增函數(shù) B.F(x),G(x)都是減函數(shù) C.F(x)是增函數(shù),G(x)是減函數(shù) D.F(x)是減函數(shù),G(x)是增函數(shù) (2)設(shè)函數(shù)f(x)=+b(a>0且a≠1),則函數(shù)f(x)的奇偶性(  ) A.與a無(wú)關(guān),且與b無(wú)關(guān)  B.與a有關(guān),且與b有關(guān) C.與a有關(guān),且與b無(wú)關(guān) D.與a無(wú)關(guān),但與b有關(guān) (3)已知定義在R上的函數(shù)y=f(x)滿(mǎn)足條件f=-f(x),且函數(shù)y=f為奇函數(shù),給出以下四個(gè)結(jié)論: ①函數(shù)f(x)是周期函數(shù); ②函數(shù)f(x)的圖象關(guān)于點(diǎn)對(duì)稱(chēng); ③函數(shù)f(x)為R上的偶函數(shù); ④函數(shù)f(x)為R上的單調(diào)函數(shù). 其中正確結(jié)論的序號(hào)

14、為_(kāi)_______. [解析] (1)對(duì)任意x1,x2∈R(x1≠x2),不等式[f(x1)-f(x2)]2>[g(x1)-g(x2)]2恒成立, 不妨設(shè)x1>x2,f(x)單調(diào)遞增, ∴f(x1)-f(x2)>g(x1)-g(x2),且f(x1)-f(x2)>-g(x1)+g(x2), ∵F(x1)=f(x1)+g(x1),F(xiàn)(x2)=f(x2)+g(x2), ∴F(x1)-F(x2)=f(x1)+g(x1)-f(x2)-g(x2)=f(x1)-f(x2)-[g(x2)-g(x1)]>0, ∴F(x)為增函數(shù);同理可證G(x)為增函數(shù),故選A. (2)因?yàn)閒(-x)=+b=+b

15、,所以f(-x)+f(x)=2b-2,所以當(dāng)b=1時(shí)函數(shù)f(x)為奇函數(shù),當(dāng)b≠1時(shí)函數(shù)f(x)為非奇非偶函數(shù),故選D. (3)f(x+3)=f=-f=f(x),所以f(x)是周期為3的周期函數(shù),①正確;函數(shù)f是奇函數(shù),其圖象關(guān)于點(diǎn)(0,0)對(duì)稱(chēng),則f(x)的圖象關(guān)于點(diǎn)對(duì)稱(chēng),②正確;因?yàn)閒(x)的圖象關(guān)于點(diǎn)對(duì)稱(chēng),-=,所以f(-x)=-f,又f=-f=-f(x),所以f(-x)=f(x),③正確;f(x)是周期函數(shù),在R上不可能是單調(diào)函數(shù),④錯(cuò)誤.故正確結(jié)論的序號(hào)為①②③. [答案] (1)A (2)D (3)①②③ [方法技巧] 函數(shù)3個(gè)性質(zhì)的應(yīng)用 奇偶性 具有奇偶性的函數(shù)在關(guān)于

16、原點(diǎn)對(duì)稱(chēng)的區(qū)間上其圖象、函數(shù)值、解析式和單調(diào)性聯(lián)系密切,研究問(wèn)題時(shí)可轉(zhuǎn)化到只研究部分(一半)區(qū)間上.尤其注意偶函數(shù)f(x)的性質(zhì):f(|x|)=f(x) 單調(diào)性 可以比較大小、求函數(shù)最值、解不等式、證明方程根的唯一性 周期性 利用周期性可以轉(zhuǎn)化函數(shù)的解析式、圖象和性質(zhì),把不在已知區(qū)間上的問(wèn)題,轉(zhuǎn)化到已知區(qū)間上求解 [演練沖關(guān)] 1.(2017·全國(guó)卷Ⅰ)函數(shù)f(x)在(-∞,+∞)單調(diào)遞減,且為奇函數(shù).若f(1)=-1,則滿(mǎn)足-1≤f(x-2)≤1的x的取值范圍是(  ) A.[-2,2] B.[-1,1] C.[0,4] D.[1,3] 解析:選D ∵f(x)為奇函

17、數(shù),∴f(-x)=-f(x). ∵f(1)=-1,∴f(-1)=-f(1)=1. 故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1). 又f(x)在(-∞,+∞)單調(diào)遞減,∴-1≤x-2≤1, ∴1≤x≤3. 2.(2017·天津高考)已知奇函數(shù)f(x)在R上是增函數(shù),g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),則a,b,c的大小關(guān)系為(  ) A.a(chǎn)

18、, 所以當(dāng)x>0時(shí),f(x)>0, 所以g(x)在(0,+∞)上單調(diào)遞增,且g(x)>0. 又a=g(-log25.1)=g(log25.1),b=g(20.8),c=g(3), 20.8<2=log240恒成立,則實(shí)數(shù)a的取值范圍為_(kāi)_______. 解析:∵a2-a+1=2+>0, ∴不等式>0恒成立轉(zhuǎn)化為1+2x+4x·a>0恒成立. 得-a<+=x+x, 而函數(shù)y=x+x為減函數(shù), 故當(dāng)x∈(-∞,1]時(shí),ymin=+=, 所以-a<,即a>-.

19、答案: (一) 主干知識(shí)要記牢 函數(shù)的奇偶性、周期性 (1)奇偶性是函數(shù)在其定義域上的整體性質(zhì),對(duì)于定義域內(nèi)的任意x(定義域關(guān)于原點(diǎn)對(duì)稱(chēng)),都有f(-x)=-f(x)成立,則f(x)為奇函數(shù)(都有f(-x)=f(x)成立,則f(x)為偶函數(shù)). (2)周期性是函數(shù)在其定義域上的整體性質(zhì),一般地,對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)的任意一個(gè)x的值:若f(x+T)=f(x)(T≠0),則f(x)是周期函數(shù),T是它的一個(gè)周期. (二) 二級(jí)結(jié)論要用好 1.函數(shù)單調(diào)

20、性和奇偶性的重要結(jié)論 (1)當(dāng)f(x),g(x)同為增(減)函數(shù)時(shí),f(x)+g(x)為增(減)函數(shù). (2)奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)區(qū)間上有相同的單調(diào)性,偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)區(qū)間上有相反的單調(diào)性. (3)f(x)為奇函數(shù)?f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng); f(x)為偶函數(shù)?f(x)的圖象關(guān)于y軸對(duì)稱(chēng). (4)偶函數(shù)的和、差、積、商是偶函數(shù),奇函數(shù)的和、差是奇函數(shù),積、商是偶函數(shù),奇函數(shù)與偶函數(shù)的積、商是奇函數(shù). (5)定義在(-∞,+∞)上的奇函數(shù)的圖象必過(guò)原點(diǎn),即有f(0)=0.存在既是奇函數(shù),又是偶函數(shù)的函數(shù):f(x)=0. (6)f(x)+f(-x)=0?f(x)為奇

21、函數(shù); f(x)-f(-x)=0?f(x)為偶函數(shù). 2.抽象函數(shù)的周期性與對(duì)稱(chēng)性的結(jié)論 (1)函數(shù)的周期性 ①若函數(shù)f(x)滿(mǎn)足f(x+a)=f(x-a),則f(x)是周期函數(shù),T=2a. ②若函數(shù)f(x)滿(mǎn)足f(x+a)=-f(x),則f(x)是周期函數(shù),T=2a. ③若函數(shù)f(x)滿(mǎn)足f(x+a)=,則f(x)是周期函數(shù),T=2a. (2)函數(shù)圖象的對(duì)稱(chēng)性 ①若函數(shù)y=f(x)滿(mǎn)足f(a+x)=f(a-x),即f(x)=f(2a-x),則f(x)的圖象關(guān)于直線x=a對(duì)稱(chēng). ②若函數(shù)y=f(x)滿(mǎn)足f(a+x)=-f(a-x),即f(x)=-f(2a-x),則f(x)的圖

22、象關(guān)于點(diǎn)(a,0)對(duì)稱(chēng). ③若函數(shù)y=f(x)滿(mǎn)足f(a+x)=f(b-x),則函數(shù)f(x)的圖象關(guān)于直線x=對(duì)稱(chēng). 3.函數(shù)圖象平移變換的相關(guān)結(jié)論 (1)把y=f(x)的圖象沿x軸左右平移|c|個(gè)單位(c>0時(shí)向左移,c<0時(shí)向右移)得到函數(shù)y=f(x+c)的圖象(c為常數(shù)). (2)把y=f(x)的圖象沿y軸上下平移|b|個(gè)單位(b>0時(shí)向上移,b<0時(shí)向下移)得到函數(shù)y=f(x)+b的圖象(b為常數(shù)). (三) 易錯(cuò)易混要明了 1.求函數(shù)的定義域時(shí),關(guān)鍵是依據(jù)含自變量x的代數(shù)式有意義來(lái)列出相應(yīng)的不等式(組)求解,如開(kāi)偶次方根,被開(kāi)方數(shù)一定是非負(fù)數(shù);對(duì)數(shù)式中的真數(shù)是正數(shù).列不等

23、式時(shí),應(yīng)列出所有的不等式,不能遺漏. 2.求函數(shù)單調(diào)區(qū)間時(shí),多個(gè)單調(diào)區(qū)間之間不能用符號(hào)“∪”和“或”連接,可用“和”連接或用“,”隔開(kāi).單調(diào)區(qū)間必須是“區(qū)間”,而不能用集合或不等式代替. 3.判斷函數(shù)的奇偶性時(shí),要注意定義域必須關(guān)于原點(diǎn)對(duì)稱(chēng),有時(shí)還要對(duì)函數(shù)式化簡(jiǎn)整理,但必須注意使定義域不受影響. 4.用換元法求解析式時(shí),要注意新元的取值范圍,即函數(shù)的定義域問(wèn)題. [針對(duì)練1] 已知f(cos x)=sin2x,則f(x)=________. 解析:令t=cos x,且t∈[-1,1],則f(t)=1-t2,t∈[-1,1],即f(x)=1-x2,x∈[-1,1]. 答案:1-x2,

24、x∈[-1,1] 5.分段函數(shù)是在其定義域的不同子集上,分別用不同的式子來(lái)表示對(duì)應(yīng)法則的函數(shù),它是一個(gè)函數(shù),而不是幾個(gè)函數(shù). [針對(duì)練2] 已知函數(shù)f(x)=則f=________. 解析:因?yàn)閒=ln=-1,所以f=f(-1)=e-1=. 答案: A組——10+7提速練 一、選擇題 1.(2019屆高三·杭州四校聯(lián)考)已知函數(shù)f(x)=則f(f(4))的值為(  ) A.-         B.-9 C. D.9 解析:選C 

25、因?yàn)閒(x)=所以f(f(4))=f(-2)=. 2.已知函數(shù)f(x)=則下列結(jié)論正確的是(  ) A.函數(shù)f(x)是偶函數(shù) B.函數(shù)f(x)是減函數(shù) C.函數(shù)f(x)是周期函數(shù) D.函數(shù)f(x)的值域?yàn)閇-1,+∞) 解析:選D 由函數(shù)f(x)的解析式,知f(1)=2,f(-1)=cos(-1)=cos 1,f(1)≠f(-1),則f(x)不是偶函數(shù).當(dāng)x>0時(shí),f(x)=x2+1,則f(x)在區(qū)間(0,+∞)上是增函數(shù),且函數(shù)值f(x)>1;當(dāng)x≤0時(shí),f(x)=cos x,則f(x)在區(qū)間(-∞,0]上不是單調(diào)函數(shù),且函數(shù)值f(x) ∈[-1,1].所以函數(shù)f(x)不是單調(diào)函

26、數(shù),也不是周期函數(shù),其值域?yàn)閇-1,+∞).故選D. 3.(2018·全國(guó)卷Ⅲ)函數(shù)y=-x4+x2+2的圖象大致為(  ) 解析:選D 法一:令f(x)=-x4+x2+2, 則f′(x)=-4x3+2x, 令f′(x)=0,得x=0或x=±, 則f′(x)>0的解集為∪, f(x)單調(diào)遞增;f′(x)<0的解集為∪,f(x)單調(diào)遞減,結(jié)合圖象知選D. 法二:當(dāng)x=1時(shí),y=2,所以排除A、B選項(xiàng).當(dāng)x=0時(shí),y=2,而當(dāng)x=時(shí),y=-++2=2>2,所以排除C選項(xiàng).故選D. 4.已知函數(shù)f(x-1)是定義在R上的奇函數(shù),且在[0,+∞)上是增函數(shù),則函數(shù)f(x)的圖象可能

27、是(  ) 解析:選B 函數(shù)f(x-1)的圖象向左平移1個(gè)單位,即可得到函數(shù)f(x)的圖象.因?yàn)楹瘮?shù)f(x-1)是定義在R上的奇函數(shù),所以函數(shù)f(x-1)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),所以函數(shù)f(x)的圖象關(guān)于點(diǎn)(-1,0)對(duì)稱(chēng),排除A、C、D,故選B. 5.(2019屆高三·鎮(zhèn)海中學(xué)測(cè)試)設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=log2(x+2)-3x+a(a∈R),則f(-2)=(  ) A.-1 B.-5 C.1 D.5 解析:選D 因?yàn)閒(x)為定義在R上的奇函數(shù), 所以f(0)=1+a=0,即a=-1. 故f(x)=log2(x+2)-3x-1(x≥0)

28、, 所以f(-2)=-f(2)=5.故選D. 6.(2018·諸暨高三期末)已知f(x),g(x)都是定義在R上的函數(shù),且f(x)為奇函數(shù),g(x)的圖象關(guān)于直線x=1對(duì)稱(chēng),則下列四個(gè)命題中錯(cuò)誤的是(  ) A.y=g(f(x)+1)為偶函數(shù) B.y=g(f(x))為奇函數(shù) C.函數(shù)y=f(g(x))的圖象關(guān)于直線x=1對(duì)稱(chēng) D.y=f(g(x+1))為偶函數(shù) 解析:選B 由題可知 選項(xiàng)A,g(f(-x)+1)=g(-f(x)+1)=g(1+f(x)), 所以y=g(f(x)+1)為偶函數(shù),正確; 選項(xiàng)B,g(f(-x))=g(-f(x))=g(2+f(x)), 所以y=

29、g(f(x))不一定為奇函數(shù),錯(cuò)誤; 選項(xiàng)C,f(g(-x))=f(g(2+x)),所以y=f(g(x))的圖象關(guān)于直線x=1對(duì)稱(chēng),正確; 選項(xiàng)D,f(g(-x+1))=f(g(x+1)),所以y=f(g(x+1))為偶函數(shù),正確. 綜上,故選B. 7.函數(shù)y=+在[-2,2]上的圖象大致為(  ) 解析:選B 當(dāng)x∈(0,2]時(shí),函數(shù)y==,x2>0恒成立,令g(x)=ln x+1,則g(x)在(0,2]上單調(diào)遞增,當(dāng)x=時(shí),y=0,則當(dāng)x∈時(shí),y=<0,x∈時(shí),y=>0,∴函數(shù)y=在(0,2]上只有一個(gè)零點(diǎn),排除A、C、D,只有選項(xiàng)B符合題意. 8.(2018·全國(guó)卷Ⅱ)已

30、知f(x)是定義域?yàn)?-∞,+∞)的奇函數(shù),滿(mǎn)足f(1-x)=f(1+x).若f(1)=2,則f(1)+f(2)+f(3)+…+f(50)=(  ) A.-50 B.0 C.2 D.50 解析:選C 法一:∵f(x)是奇函數(shù),∴f(-x)=-f(x), ∴f(1-x)=-f(x-1). 由f(1-x)=f(1+x),得-f(x-1)=f(x+1), ∴f(x+2)=-f(x), ∴f(x+4)=-f(x+2)=f(x), ∴函數(shù)f(x)是周期為4的周期函數(shù). 由f(x)為奇函數(shù)得f(0)=0. 又∵f(1-x)=f(1+x), ∴f(x)的圖象關(guān)于直線x=1對(duì)稱(chēng),

31、 ∴f(2)=f(0)=0,∴f(-2)=0. 又f(1)=2,∴f(-1)=-2, ∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0, ∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50) =0×12+f(49)+f(50) =f(1)+f(2)=2+0=2. 法二:由題意可設(shè)f(x)=2sin,作出f(x)的部分圖象如圖所示.由圖可知,f(x)的一個(gè)周期為4,所以f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=12×0+f(1)+f(2)

32、=2. 9.設(shè)函數(shù)f(x)=ax2+bx+c(a>b>c)的圖象經(jīng)過(guò)點(diǎn)A(m1,f(m1))和點(diǎn)B(m2,f(m2)),f(1)=0.若a2+[f(m1)+f(m2)]a+f(m1)·f(m2)=0,則(  ) A.b≥0 B.b<0 C.3a+c≤0 D.3a-c<0 解析:選A ∵函數(shù)f(x)=ax2+bx+c(a>b>c), 滿(mǎn)足f(1)=0,∴a+b+c=0. 若a≤0,∵a>b>c,∴b<0,c<0, 則有a+b+c<0,這與a+b+c=0矛盾,∴a>0成立. 若c≥0,則有b>0,a>0, 此時(shí)a+b+c>0,這與a+b+c=0矛盾, ∴c<0成立.

33、∵a2+[f(m1)+f(m2)]·a+f(m1)·f(m2)=0, ∴[a+f(m1)]·[a+f(m2)]=0, ∴m1,m2是方程f(x)=-a的兩根, ∴Δ=b2-4a(a+c)=b(b+4a)=b(3a-c)≥0, 而a>0,c<0, ∴3a-c>0,∴b≥0.故選A. 10.已知函數(shù)f(x)=若f(x)的值域?yàn)镽,則實(shí)數(shù)a的取值范圍是(  ) A.(1,2] B.(-∞,2] C.(0,2] D.[2,+∞) 解析:選A 依題意,當(dāng)x≥1時(shí),f(x)=1+log2x單調(diào)遞增,f(x)=1+log2x在區(qū)間[1,+∞)上的值域是[1,+∞).因此,要使函數(shù)f

34、(x)的值域是R,則需函數(shù)f(x)在(-∞,1)上的值域M?(-∞,1).①當(dāng)a-1<0,即a<1時(shí),函數(shù)f(x)在(-∞,1)上單調(diào)遞減,函數(shù)f(x)在(-∞,1)上的值域M=(-a+3,+∞),顯然此時(shí)不能滿(mǎn)足M?(-∞,1),因此a<1不滿(mǎn)足題意;②當(dāng)a-1=0,即a=1時(shí),函數(shù)f(x)在(-∞,1)上的值域M={2},此時(shí)不能滿(mǎn)足M?(-∞,1),因此a=1不滿(mǎn)足題意;③當(dāng)a-1>0,即a>1時(shí),函數(shù)f(x)在(-∞,1)上單調(diào)遞增,函數(shù)f(x)在(-∞,1)上的值域M=(-∞,-a+3),由M?(-∞,1)得解得1

35、 二、填空題 11.已知函數(shù)f(x)的定義域?yàn)镽.當(dāng)x<0時(shí),f(x)=x3-1;當(dāng)-1≤x≤1時(shí),f(-x)=-f(x);當(dāng)x>時(shí),f=f,則f(0)=________,f(6)=________. 解析:函數(shù)f(x)在[-1,1]上為奇函數(shù),故f(0)=0, 又由題意知當(dāng)x>時(shí),f=f, 則f(x+1)=f(x). 又當(dāng)-1≤x≤1時(shí),f(-x)=-f(x), ∴f(6)=f(1)=-f(-1). 又當(dāng)x<0時(shí),f(x)=x3-1, ∴f(-1)=-2,∴f(6)=2. 答案:0 2 12.(2018·臺(tái)州第一次調(diào)考)若函數(shù)f(x)=a-(a∈R)是奇函數(shù),則a=___

36、_____,函數(shù)f(x)的值域?yàn)開(kāi)___________. 解析:函數(shù)f(x)的定義域?yàn)?-∞,0)∪(0,+∞), ∵f(x)是奇函數(shù), ∴f(-x)=-f(x)恒成立, ∴a-=-恒成立, ∴a=+=+==-1. ∴f(x)=-1-,當(dāng)x∈(0,+∞)時(shí),2x>1, ∴2x-1>0,∴>0,∴f(x)<-1; 當(dāng)x∈(-∞,0)時(shí),0<2x<1, ∴-1<2x-1<0,∴<-1, ∴->2,∴f(x)>1, 故函數(shù)f(x)的值域?yàn)?-∞,-1)∪(1,+∞). 答案:-1 (-∞,-1)∪(1,+∞) 13.(2018·紹興柯橋區(qū)模擬)已知偶函數(shù)f(x)在[0,+

37、∞)上單調(diào)遞減,f(2)=0,若f(x-2)>0,則x的取值范圍是________. 解析:∵偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減, 且f(2)=0, ∴f(2)=f(-2)=0, 則不等式f(x-2)>0,等價(jià)為f(|x-2|)>f(2), ∴|x-2|<2, 即-21),都有f(x-2)≤g(x),則m的取值范圍是________. 解析:作出函數(shù)y1=e|x-2|和y=g(x)的圖象,如圖所示,由圖可知當(dāng)x=1時(shí),

38、y1=g(1),又當(dāng)x=4時(shí),y1=e24時(shí),由ex-2≤4e5-x,得e2x-7≤4,即2x-7≤ln 4,解得x≤+ln 2,又m>1, ∴1

39、(-∞,-1),(1,+∞); ⑤函數(shù)f(x)不是周期函數(shù). 其中正確說(shuō)法的序號(hào)為_(kāi)_______. 解析:對(duì)于新運(yùn)算“★”的性質(zhì)(3),令c=0,則(a★b)★0=0★(ab)+(a★0)+(0★b)=ab+a+b,即a★b=ab+a+b.∴f(x)=x★=1+x+,當(dāng)x>0時(shí),f(x)=1+x+≥1+2 =3,當(dāng)且僅當(dāng)x=,即x=1時(shí)取等號(hào),∴函數(shù)f(x)在(0,+∞)上的最小值為3,故①正確;函數(shù)f(x)的定義域?yàn)?-∞,0)∪(0,+∞),∵f(1)=1+1+1=3,f(-1)=1-1-1=-1,∴f(-1)≠-f(1)且f(-1)≠f(1),∴函數(shù)f(x)為非奇非偶函數(shù),故②③

40、錯(cuò)誤;根據(jù)函數(shù)的單調(diào)性,知函數(shù)f(x)=1+x+的單調(diào)遞增區(qū)間為(-∞,-1),(1,+∞),故④正確;由④知,函數(shù)f(x)=1+x+不是周期函數(shù),故⑤正確.綜上所述,所有正確說(shuō)法的序號(hào)為①④⑤. 答案:①④⑤ 16.(2018·鎮(zhèn)海中學(xué)階段性測(cè)試)已知函數(shù)f(x)=ln-2,g(x)和f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),將函數(shù)g(x)的圖象向右平移a(a>0)個(gè)單位長(zhǎng)度,再向下平移b(b>0)個(gè)單位長(zhǎng)度,若對(duì)于任意實(shí)數(shù)a,平移后g(x)和f(x)的圖象最多只有一個(gè)交點(diǎn),則b的最小值為_(kāi)_______. 解析:由f(x)=ln-2,知x>0, f(x)≥ln e-2=-1,∴f(x)min=-

41、1,此時(shí)x=. 在同一直角坐標(biāo)系中,作出f(x),g(x)的圖象(圖略),若對(duì)于任意的a,平移后g(x)和f(x)的圖象最多只有一個(gè)交點(diǎn),則平移后g(x)的圖象的最高點(diǎn)不能在f(x)圖象的最低點(diǎn)的上方,則1-b≤-1,則b的最小值為2. 答案:2 17.(2017·山東高考)若函數(shù)exf(x)(e=2.718 28…是自然對(duì)數(shù)的底數(shù))在f(x)的定義域上單調(diào)遞增,則稱(chēng)函數(shù)f(x)具有M性質(zhì).下列函數(shù)中所有具有M性質(zhì)的函數(shù)的序號(hào)為_(kāi)_______. ①f(x)=2-x;②f(x)=3-x;③f(x)=x3; ④f(x)=x2+2. 解析:設(shè)g(x)=exf(x),對(duì)于①,g(x)=e

42、x·2-x, 則g′(x)=(ex·2-x)′=ex·2-x(1-ln 2)>0, 所以函數(shù)g(x)在(-∞,+∞)上為增函數(shù),故①符合要求; 對(duì)于②,g(x)=ex·3-x, 則g′(x)=(ex·3-x)′=ex·3-x(1-ln 3)<0, 所以函數(shù)g(x)在(-∞,+∞)上為減函數(shù),故②不符合要求; 對(duì)于③,g(x)=ex·x3, 則g′(x)=(ex·x3)′=ex·(x3+3x2), 顯然函數(shù)g(x)在(-∞,+∞)上不單調(diào),故③不符合要求; 對(duì)于④,g(x)=ex·(x2+2), 則g′(x)=[ex·(x2+2)]′=ex·(x2+2x+2)=ex·[(x+

43、1)2+1]>0, 所以函數(shù)g(x)在(-∞,+∞)上為增函數(shù),故④符合要求. 綜上,具有M性質(zhì)的函數(shù)的序號(hào)為①④. 答案:①④ B組——能力小題保分練 1.(2019屆高三·浙江新高考名校聯(lián)考)函數(shù)f(x)=ln |x|+x2的大致圖象是(  ) 解析:選A 因?yàn)閒(-x)=ln |-x|+(-x)2=ln |x|+x2=f(x),所以f(x)是偶函數(shù),于是其圖象關(guān)于y軸對(duì)稱(chēng),排除D;當(dāng)x>0時(shí),f(x)=ln x+x2,f′(x)=+x≥2,所以函數(shù)f(x)在(0,+∞)上單調(diào)遞增,排除B;當(dāng)x∈(0,1)時(shí),f′(x)>2,且f′(x)是減函數(shù),當(dāng)x>1時(shí),f′(x)>2

44、,且f′(x)是增函數(shù),因此,當(dāng)x趨近于0或x趨近于+∞時(shí),曲線較陡,因此排除C.故選A. 2.已知定義在R上的奇函數(shù)f(x)滿(mǎn)足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),則(  ) A.f(-25)

45、奇函數(shù),且滿(mǎn)足f(x-4)=-f(x),得f(11)=f(3)=-f(-1)=f(1). 因?yàn)閒(x)在區(qū)間[0,2]上是增函數(shù),f(x)在R上是奇函數(shù), 所以f(x)在區(qū)間[-2,2]上是增函數(shù), 所以f(-1)0時(shí)的圖象即

46、可.對(duì)于選項(xiàng)A,當(dāng)x>0時(shí),f(x)=x2-2ln x,所以f′(x)=2x-=,因此f(x)在x=1處取得極小值,故A錯(cuò)誤;對(duì)于選項(xiàng)B,當(dāng)x>0時(shí),f(x)=x2-ln x,所以f′(x)=2x-=,因此f(x)在x=處取得極小值,故B正確;對(duì)于選項(xiàng)C,當(dāng)x>0時(shí),f(x)=x-2ln x,所以f′(x)=1-=,因此f(x)在x=2處取得極小值,故C錯(cuò)誤;對(duì)于選項(xiàng)D,當(dāng)x>0時(shí),f(x)=x-ln x,所以f′(x)=1-=,因此f(x)在x=1處取得極小值,故D錯(cuò)誤.故選B. 4.定義:F(x)=max{f(t)|-1≤t≤x≤1},G(x)=min{f(t)|-1≤t≤x≤1},其中

47、max{m,n}表示m,n中的較大者,min{m,n}表示m,n中的較小者.已知函數(shù)f(x)=2ax2+bx,則下列說(shuō)法一定正確的是(  ) A.若F(-1)=F(1),則f(-1)>f(1) B.若G(1)=F(-1),則F(-1)G(1) D.若G(-1)=G(1),則f(-1)>f(1) 解析:選B 依據(jù)題意,由≤4可得f(x)=2ax2+bx的圖象的對(duì)稱(chēng)軸x=-∈[-1,1],由F(-1)=F(1)知f(-1)=F(1),F(xiàn)(1)為f(t)在t∈[-1,1]上的最大值,無(wú)法排除f(-1)=f(1)的可能,所以A錯(cuò)誤;由G(

48、1)=F(-1)=f(-1)知,f(t)在t∈[-1,1]上的最小值為f(-1),所以F(-1)=f(-1)

49、其解集A≠?時(shí),可設(shè)A={m<x<n}. 首先,若n=2時(shí),則|2+a|-2a=4, 解得a=-2,滿(mǎn)足A?B. 由函數(shù)y=|x+a|-2a的圖象可知,當(dāng)a<-2時(shí),n>2,不滿(mǎn)足A?B,不合題意,即可知a≥-2;考慮函數(shù)y=|x+a|-2a的右支與y=x2相切時(shí),則x+a-2a=x2,即x2-x+a=0,解得a=. 又當(dāng)a≥時(shí),A=?,即可知a<. 綜上可知:-2≤a<. 或考慮函數(shù)y=|x+a|和函數(shù)y=x2+2a進(jìn)行數(shù)形結(jié)合. 答案: 6.在平面直角坐標(biāo)系xOy中,設(shè)定點(diǎn)A(a,a),P是函數(shù)y=(x>0)圖象上一動(dòng)點(diǎn).若點(diǎn)P,A之間的最短距離為2,則滿(mǎn)足條件的實(shí)數(shù)a

50、的所有值為_(kāi)_______. 解析:設(shè)P,則|PA|2=(x-a)2+2=2-2a+2a2-2, 令t=x+,則t≥2(x>0,當(dāng)且僅當(dāng)x=1時(shí)取“=”),則|PA|2=t2-2at+2a2-2. ①當(dāng)a≤2時(shí),(|PA|2)min=22-2a×2+2a2-2=2a2-4a+2, 由題意知,2a2-4a+2=8, 解得a=-1或a=3(舍去). ②當(dāng)a>2時(shí),(|PA|2)min=a2-2a×a+2a2-2=a2-2. 由題意知,a2-2=8,解得a=或a=-(舍去), 綜上知,a=-1,. 答案:-1, 第二講 小題考法——基本初等函數(shù)、函數(shù)與方程、函數(shù)模型的應(yīng)用 考

51、點(diǎn)(一) 基本初等函數(shù)的概念、圖象與性質(zhì) 主要考查指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的運(yùn)算及其圖象與性質(zhì);冪函數(shù)的圖象與性質(zhì)、二次函數(shù)的圖象與性質(zhì)及最值問(wèn)題. [典例感悟] [典例] (1)(2017·浙江高考)若函數(shù)f(x)=x2+ax+b在區(qū)間[0,1]上的最大值是M,最小值是m,則M-m(  ) A.與a有關(guān),且與b有關(guān)  B.與a有關(guān),但與b無(wú)關(guān) C.與a無(wú)關(guān),且與b無(wú)關(guān) D.與a無(wú)關(guān),但與b有關(guān) (2)(2017·全國(guó)卷Ⅰ)設(shè)x,y,z為正數(shù),且2x=3y=5z,則(  ) A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z

52、 (3)已知a>0且a≠1,loga2=x,則ax=________;a2x+a-2x=________. [解析] (1)f(x)=2-+b, ①當(dāng)0≤-≤1時(shí),f(x)min=m=f=-+b,f(x)max=M=max{f(0),f(1)}=max{b,1+a+b}, ∴M-m=max與a有關(guān),與b無(wú)關(guān); ②當(dāng)-<0時(shí),f(x)在[0,1]上單調(diào)遞增, ∴M-m=f(1)-f(0)=1+a與a有關(guān),與b無(wú)關(guān); ③當(dāng)->1時(shí),f(x)在[0,1]上單調(diào)遞減, ∴M-m=f(0)-f(1)=-1-a與a有關(guān),與b無(wú)關(guān). 綜上所述,M-m與a有關(guān),但與b無(wú)關(guān). (2)設(shè)2x=3

53、y=5z=k>1, ∴x=log2k,y=log3k,z=log5k. ∵2x-3y=2log2k-3log3k=- == =>0, ∴2x>3y; ∵3y-5z=3log3k-5log5k=- == =<0, ∴3y<5z; ∵2x-5z=2log2k-5log5k=-===<0, ∴5z>2x.∴5z>2x>3y. (3)由對(duì)數(shù)的定義知ax=2,所以a-x=,因此a2x+a-2x=(ax)2+(a-x)2=22+2=. [答案] (1)B (2)D (3)2  [方法技巧] 3招破解指數(shù)、對(duì)數(shù)、冪函數(shù)值的大小比較問(wèn)題 (1)底數(shù)相同,指數(shù)不同的冪用指數(shù)函數(shù)的

54、單調(diào)性進(jìn)行比較. (2)底數(shù)相同,真數(shù)不同的對(duì)數(shù)值用對(duì)數(shù)函數(shù)的單調(diào)性比較. (3)底數(shù)不同、指數(shù)也不同,或底數(shù)不同、真數(shù)也不同的兩個(gè)數(shù),常引入中間量或結(jié)合圖象比較大?。? [演練沖關(guān)] 1.(2017·北京高考)已知函數(shù)f(x)=3x-x,則f(x)(  ) A.是奇函數(shù),且在R上是增函數(shù) B.是偶函數(shù),且在R上是增函數(shù) C.是奇函數(shù),且在R上是減函數(shù) D.是偶函數(shù),且在R上是減函數(shù) 解析:選A 因?yàn)閒(x)=3x-x,且定義域?yàn)镽,所以f(-x)=3-x--x=x-3x=-=-f(x),即函數(shù)f(x)是奇函數(shù). 又y=3x在R上是增函數(shù),y=x在R上是減函數(shù),所以f(x)=

55、3x-x在R上是增函數(shù). 2.(2018·天津高考)已知a=log3,b=,c=log,則a,b,c的大小關(guān)系為(  ) A.a(chǎn)>b>c B.b>a>c C.c>b>a D.c>a>b 解析:選D ∵c=log=log35,a=log3, 又y=log3x在(0,+∞)上是增函數(shù), ∴l(xiāng)og35>log3>log33=1, ∴c>a>1. ∵y=x在(-∞,+∞)上是減函數(shù), ∴<0=1,即b<1. ∴c>a>b. 3.(2019屆高三·溫州四校聯(lián)考)計(jì)算:×80.25+(-2 018)0=________,log23×log34+()=________. 解析

56、:×80.25+(-2 018)0=2×2+1=3,log23×log34+()=×+3=2+3=4. 答案:3 4 4.定義區(qū)間[x1,x2](x11)的定義域?yàn)閇m,n](m

57、 的 零 點(diǎn) 主要考查利用函數(shù)零點(diǎn)存在性定理或數(shù)形結(jié)合法確定函數(shù)零點(diǎn)的個(gè)數(shù)或其存在范圍,以及應(yīng)用零點(diǎn)求參數(shù)的值(或范圍). [典例感悟] [典例] (1)(2018·縉云質(zhì)檢)已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x,則函數(shù)g(x)=f(x)+1的零點(diǎn)的個(gè)數(shù)是(  ) A.1            B.2 C.3 D.4 (2)(2019屆高三·寧波十校聯(lián)考)已知函數(shù)f(x)=則方程f=1的實(shí)根個(gè)數(shù)為(  ) A.8 B.7 C.6 D.5 (3)(2017·全國(guó)卷Ⅲ)已知函數(shù)f(x)=x2-2x+a(ex-1+e-x+1)有唯一

58、零點(diǎn),則a=(  ) A.- B. C. D.1 [解析] (1)若x<0,-x>0,則f(-x)=x2+2x. ∵f(x)是定義在R上的奇函數(shù), ∴f(-x)=x2+2x=-f(x), 即f(x)=-x2-2x,x<0, 當(dāng)x≥0時(shí),由g(x)=f(x)+1=0得x2-2x+1=0, 即(x-1)2=0,得x=1. 當(dāng)x<0時(shí),由g(x)=f(x)+1=0得-x2-2x+1=0,即x2+2x-1=0. 即(x+1)2=2,得x=-1(舍)或x=--1, 故函數(shù)g(x)=f(x)+1的零點(diǎn)個(gè)數(shù)是2個(gè),故選B. (2)令f(x)=1,得x=3或x=1或x=或x=-

59、1, ∵f=1, ∴x+-2=3或x+-2=1或x+-2=或x+-2=-1. 令g(x)=x+-2, 則當(dāng)x>0時(shí),g(x)≥2-2=0, 當(dāng)x<0時(shí),g(x)≤-2-2=-4, 作出g(x)的函數(shù)圖象如圖所示: ∴方程x+-2=3,x+-2=1,x+-2=均有兩解,方程x+-2=-1無(wú)解. ∴方程f=1有6解.故選C. (3)由f(x)=0?a(ex-1+e-x+1)=-x2+2x. ex-1+e-x+1≥2=2,當(dāng)且僅當(dāng)x=1時(shí)等號(hào)成立. -x2+2x=-(x-1)2+1≤1,當(dāng)且僅當(dāng)x=1時(shí)等號(hào)成立. 若a>0,則a(ex-1+e-x+1)≥2a, 要使f(

60、x)有唯一零點(diǎn),則必有2a=1,即a=. 若a≤0,則f(x)的零點(diǎn)不唯一. 綜上所述,a=.故選C. [答案] (1)B (2)C (3)C [方法技巧] 1.判斷函數(shù)零點(diǎn)個(gè)數(shù)的方法 直接法 直接求零點(diǎn),令f(x)=0,則方程解的個(gè)數(shù)即為函數(shù)零點(diǎn)的個(gè)數(shù) 定理法 利用零點(diǎn)存在性定理,但利用該定理只能確定函數(shù)的某些零點(diǎn)是否存在,必須結(jié)合函數(shù)的圖象和性質(zhì)(如單調(diào)性)才能確定函數(shù)有多少個(gè)零點(diǎn) 數(shù)形 結(jié)合法 對(duì)于給定的函數(shù)不能直接求解或畫(huà)出圖象的,常分解轉(zhuǎn)化為兩個(gè)能畫(huà)出圖象的函數(shù)的交點(diǎn)問(wèn)題 2.利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法 (1)利用零點(diǎn)存在的判定定理構(gòu)建

61、不等式求解. (2)分離參數(shù)后轉(zhuǎn)化為求函數(shù)的值域(最值)問(wèn)題求解. (3)轉(zhuǎn)化為兩個(gè)熟悉的函數(shù)圖象的位置關(guān)系問(wèn)題,從而構(gòu)建不等式求解. [演練沖關(guān)] 1.(2018·湖州、衢州、麗水高三質(zhì)檢)已知函數(shù)f(x)=|x-1|+|x|+|x+1|,則方程f(2x-1)=f(x)所有根的和是(  ) A. B.1 C. D.2 解析:選C 由題可知函數(shù)f(x)為偶函數(shù),且在(-∞,0)上單調(diào)遞減,(0,+∞)上單調(diào)遞增.從而方程f(2x-1)=f(x)等價(jià)于|2x-1|=|x|,解得x=1或x=,所以根的和為,故選C. 2.已知函數(shù)f(x)=則f(f(-1))=________

62、;若函數(shù)y=f(x)-a恰有一個(gè)零點(diǎn),則a的取值范圍是________. 解析:∵f(-1)=1,∴f(f(-1))=f(1)=2. 當(dāng)x>0時(shí),f′(x)=4x-=, ∴當(dāng)0時(shí),f′(x)>0, ∴f(x)在上單調(diào)遞減,在上單調(diào)遞增, ∴當(dāng)x=時(shí),f(x)取得極小值f=-ln, 作出函數(shù)f(x)的圖象如圖所示. ∵函數(shù)y=f(x)-a恰有一個(gè)零點(diǎn), ∴0≤a<-ln. 答案:2  3.(2018·鎮(zhèn)海中學(xué)階段性測(cè)試)已知函數(shù)y=f(x)和y=g(x)在[-2,2]上的圖象如下圖所示.給出下列四個(gè)命題: ①方程f(g(x))=0有且

63、僅有6個(gè)根; ②方程g(f(x))=0有且僅有3個(gè)根; ③方程f(f(x))=0有且僅有5個(gè)根; ④方程g(g(x))=0有且僅有4個(gè)根. 其中正確的命題為_(kāi)_______(填序號(hào)). 解析:由題圖知方程f(t)=0有三個(gè)根,t1∈(-2,-1),t2=0,t3∈(1,2), 由題圖知方程g(x)=t1有兩個(gè)不同的根;方程g(x)=t2=0有兩個(gè)不同的根,方程g(x)=t3有兩個(gè)不同的根,則方程f(g(x))=0有且僅有6個(gè)根.故①正確; 由題圖知方程g(u)=0有兩個(gè)根,u1∈(-2,-1),u2∈(0,1), 由題圖知方程f(x)=u1只有1個(gè)根,方程f(x)=u2有三個(gè)不

64、同的根,則方程g(f(x))=0有且僅有4個(gè)根.故②不正確;由題圖知方程f(x)=t1只有1個(gè)根,方程f(x)=t2=0有三個(gè)不同的根,方程f(x)=t3只有1個(gè)根,則方程f(f(x))=0有且僅有5個(gè)根.故③正確. 由圖知方程g(x)=u1有兩個(gè)不同的根,方程g(x)=u2有兩個(gè)不同的根,則方程g(g(x))=0有且僅有4個(gè)根.故④正確.故①③④正確. 答案:①③④ 考點(diǎn)(三) 函數(shù)模型的應(yīng)用 主要考查利用給定的函數(shù)模型解決簡(jiǎn)單的實(shí)際問(wèn)題. [典例感悟] [典例] (1)(2018·開(kāi)封模擬)李冶(1192~1279),真定欒城(今河北省石家莊市)人,金元時(shí)期的數(shù)學(xué)家、

65、詩(shī)人,晚年在封龍山隱居講學(xué),數(shù)學(xué)著作多部,其中《益古演段》主要研究平面圖形問(wèn)題:求圓的直徑、正方形的邊長(zhǎng)等.其中一問(wèn):現(xiàn)有正方形方田一塊,內(nèi)部有一個(gè)圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長(zhǎng)分別是(注:240平方步為1畝,圓周率按3近似計(jì)算)(  ) A.10步,50步       B.20步,60步 C.30步,70步 D.40步,80步 (2)某工廠產(chǎn)生的廢氣經(jīng)過(guò)過(guò)濾后排放,過(guò)濾過(guò)程中廢氣的污染物數(shù)量P(毫克/升)與時(shí)間t(小時(shí))的關(guān)系為P=P0e-kt.如果在前5小時(shí)消除了10%的污染物,那么污染物

66、減少19%需要花費(fèi)的時(shí)間為_(kāi)_______小時(shí). [解析] (1)設(shè)圓池的半徑為r步,則方田的邊長(zhǎng)為(2r+40)步,由題意,得(2r+40)2-3r2=13.75×240,解得r=10或r=-170(舍去),所以圓池的直徑為20步,方田的邊長(zhǎng)為60步,故選B. (2)前5小時(shí)污染物消除了10%,此時(shí)污染物剩下90%,即t=5時(shí),P=0.9P0,代入,得(e-k)5=0.9, ∴e-k=0.9,∴P=P0e-kt=P0t.當(dāng)污染物減少19%時(shí),污染物剩下81%,此時(shí)P=0.81P0,代入得0.81=t,解得t=10,即需要花費(fèi)10小時(shí). [答案] (1)B (2)10 [方法技巧] 解決函數(shù)實(shí)際應(yīng)用題的2個(gè)關(guān)鍵點(diǎn) (1)認(rèn)真讀題,縝密審題,準(zhǔn)確理解題意,明確問(wèn)題的實(shí)際背景,然后進(jìn)行科學(xué)地抽象概括,將實(shí)際問(wèn)題歸納為相應(yīng)的數(shù)學(xué)問(wèn)題. (2)要合理選取參變量,設(shè)定變量之后,就要尋找它們之間的內(nèi)在聯(lián)系,選用恰當(dāng)?shù)拇鷶?shù)式表示問(wèn)題中的關(guān)系,建立相應(yīng)的函數(shù)模型,最終求解數(shù)學(xué)模型使實(shí)際問(wèn)題獲解. [演練沖關(guān)] 1.(2018·浙江高考)我國(guó)古代數(shù)學(xué)著作《張邱建算經(jīng)》中記載百雞問(wèn)題:

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!