影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 立體幾何 專題突破練16 空間中的垂直與幾何體的體積 文

上傳人:xt****7 文檔編號(hào):105964595 上傳時(shí)間:2022-06-13 格式:DOC 頁(yè)數(shù):7 大小:252KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 立體幾何 專題突破練16 空間中的垂直與幾何體的體積 文_第1頁(yè)
第1頁(yè) / 共7頁(yè)
2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 立體幾何 專題突破練16 空間中的垂直與幾何體的體積 文_第2頁(yè)
第2頁(yè) / 共7頁(yè)
2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 立體幾何 專題突破練16 空間中的垂直與幾何體的體積 文_第3頁(yè)
第3頁(yè) / 共7頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 立體幾何 專題突破練16 空間中的垂直與幾何體的體積 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 立體幾何 專題突破練16 空間中的垂直與幾何體的體積 文(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 立體幾何 專題突破練16 空間中的垂直與幾何體的體積 文 1.(2018江蘇卷,15)在平行六面體ABCD-A1B1C1D1中,AA1=AB,AB1⊥B1C1. 求證:(1)AB∥平面A1B1C; (2)平面ABB1A1⊥平面A1BC. 2.如圖,四面體ABCD中,△ABC是正三角形,AD=CD. (1)證明:AC⊥BD; (2)已知△ACD是直角三角形,AB=BD,若E為棱BD上與D不重合的點(diǎn),且AE⊥EC,求四面體ABCE與四面體ACDE的體積比.

2、 3.(2018江西南昌三模,文18)如圖,多面體ABCDEF中,四邊形ABCD為正方形,AB=2,AE=3,DE=,EF=,cos∠CDE=,且EF∥BD. (1)證明:平面ABCD⊥平面EDC; (2)求三棱錐A-EFC的體積. 4.如圖,菱形ABCD的對(duì)角線AC與BD交于點(diǎn)O,點(diǎn)E,F分別在AD,CD上,AE=CF,EF交BD于點(diǎn)H.將△DEF沿EF折到△D'EF的位置. (1)證明:AC⊥HD'; (2)若AB=5,AC=6,AE=,OD'=2,求五棱錐D'-ABCFE的體積. 5

3、.(2018河南鄭州三模,文19)如圖,四棱錐E-ABCD中,AD∥BC,AD=AB=AE=BC=1,且BC⊥底面ABE,M為棱CE的中點(diǎn), (1)求證:直線DM⊥平面CBE; (2)當(dāng)四面體D-ABE的體積最大時(shí),求四棱錐E-ABCD的體積. 6.如圖,在三棱臺(tái)ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3. (1)求證:BF⊥平面ACFD; (2)求直線BD與平面ACFD所成角的余弦值. 7.(2018全國(guó)卷3,文19)如圖,矩

4、形ABCD所在平面與半圓弧所在平面垂直,M是上異于C,D的點(diǎn). (1)證明:平面AMD⊥平面BMC; (2)在線段AM上是否存在點(diǎn)P,使得MC∥平面PBD?說明理由. 8.如圖(1),在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2,AD=6,CE⊥AD于點(diǎn)E,把△DEC沿CE折到△D'EC的位置,使D'A=2,如圖(2).若G,H分別為D'B,D'E的中點(diǎn). (1)求證:GH⊥D'A; (2)求三棱錐C-D'BE的體積.

5、 參考答案 專題突破練16 空間中的垂直與 幾何體的體積 1.證明 (1)在平行六面體ABCD-A1B1C1D1中,AB∥A1B1. 因?yàn)锳B?平面A1B1C,A1B1?平面A1B1C,所以AB∥平面A1B1C. (2)在平行六面體ABCD-A1B1C1D1中,四邊形ABB1A1為平行四邊形. 又因?yàn)锳A1=AB,所以四邊形ABB1A1為菱形,因此AB1⊥A1B. 又因?yàn)锳B1⊥B1C1,BC∥B1C1, 所以AB1⊥BC. 又因?yàn)锳1B∩BC=B,A1B?平面A1BC,BC?平面A1BC, 所以AB1⊥平面A1BC. 因?yàn)锳B1?平面ABB1A1, 所以平

6、面ABB1A1⊥平面A1BC. 2.(1)證明 取AC的中點(diǎn)O,連接DO,BO. 因?yàn)锳D=CD,所以AC⊥DO. 又由于△ABC是正三角形, 所以AC⊥BO. 從而AC⊥平面DOB,故AC⊥BD. (2)解 連接EO. 由(1)及題設(shè)知∠ADC=90°, 所以DO=AO. 在Rt△AOB中,BO2+AO2=AB2. 又AB=BD,所以BO2+DO2=BO2+AO2=AB2=BD2,故∠DOB=90°. 由題設(shè)知△AEC為直角三角形, 所以EO=AC. 又△ABC是正三角形,且AB=BD, 所以EO=BD. 故E為BD的中點(diǎn),從而E到平面ABC的距離為D到平面

7、ABC的距離的,四面體ABCE的體積為四面體ABCD的體積的,即四面體ABCE與四面體ACDE的體積之比為1∶1. 3.(1)證明 ∵AB=2,AE=3,DE=,由勾股定理得AD⊥DE.又正方形ABCD中AD⊥DC,且DE∩DC=D, ∴AD⊥平面EDC. ∵AD?面ABCD, ∴平面ABCD⊥平面EDC. (2)解 由已知cos∠CDE=,連接AC交BD于G. 作OE⊥CD于O, 則OD=DE·cos∠CDE=1,OE=2. 又由(1)知,平面ABCD⊥平面EDC,平面ABCD∩平面EDC=CD, OE?平面EDC,得OE⊥面ABCD. 由EF∥BD,EF=,知四邊形

8、DEFG為平行四邊形,即DE∥FG, 而VA-EFC=VE-AFC,進(jìn)而VA-EFC=VE-AFC=VD-AFC=VF-ADC.又由EF∥BD,VF-ADC=VE-ADC=×2×2×2=,所以,三棱錐A-EFC的體積為. 4.(1)證明 由已知得AC⊥BD,AD=CD. 又由AE=CF得,故AC∥EF.由此得EF⊥HD,EF⊥HD',所以AC⊥HD'. (2)解 由EF∥AC得. 由AB=5,AC=6得DO=BO==4. 所以O(shè)H=1,D'H=DH=3. 于是OD'2+OH2=(2)2+12=9=D'H2,故OD'⊥OH.由(1)知AC⊥HD', 又AC⊥BD,BD∩HD'=H

9、, 所以AC⊥平面BHD',于是AC⊥OD'.又由OD'⊥OH,AC∩OH=O, 所以,OD'⊥平面ABC. 又由得EF=. 五邊形ABCFE的面積S=×6×8-×3=. 所以五棱錐D'-ABCFE的體積V=×2. 5.解 (1)∵AE=AB,設(shè)N為EB的中點(diǎn), ∴AN⊥EB. 又BC⊥平面AEB,AN?平面AEB, ∴BC⊥AN. 又BC∩BE=B,∴AN⊥平面BCE. ∵M(jìn)N∥BC,MN=BC, ∴AD􀱀MN. ∴四邊形ANMD為平行四邊形,DM∥AN, ∴DM⊥平面CBE. (2)設(shè)∠EAB=θ,AD=AB=AE=1,且AD⊥底面ABE,

10、 則四面體D-ABE的體積V=×AE·AB·sin θ·AD=sin θ, 當(dāng)θ=90°,即AE⊥AB時(shí)體積最大. 又BC⊥平面AEB,AE?平面AEB, ∴AE⊥BC, ∵BC∩AB=B,∴AE⊥平面ABC, VE-ABCD=×(1+2)×1×1=. 6.(1)證明 延長(zhǎng)AD,BE,CF相交于一點(diǎn)K,如圖所示. 因?yàn)槠矫鍮CFE⊥平面ABC,且AC⊥BC,所以AC⊥平面BCK,因此BF⊥AC. 又因?yàn)镋F∥BC,BE=EF=FC=1,BC=2,所以△BCK為等邊三角形,且F為CK的中點(diǎn),則BF⊥CK. 所以BF⊥平面ACFD. (2)解 因?yàn)锽F⊥平面ACK,所以∠B

11、DF是直線BD與平面ACFD所成的角. 在Rt△BFD中,BF=,DF=,得cos∠BDF=,所以直線BD與平面ACFD所成角的余弦值為. 7.解 (1)由題設(shè)知,平面CMD⊥平面ABCD,交線為CD.因?yàn)锽C⊥CD,BC?平面ABCD,所以BC⊥平面CMD,故BC⊥DM. 因?yàn)镸為上異于C,D的點(diǎn),且DC為直徑,所以DM⊥CM. 又BC∩CM=C,所以DM⊥平面BMC.而DM?平面AMD,故平面AMD⊥平面BMC. (2)當(dāng)P為AM的中點(diǎn)時(shí),MC∥平面PBD. 證明如下:連接AC交BD于O.因?yàn)锳BCD為矩形,所以O(shè)為AC中點(diǎn). 連接OP,因?yàn)镻為AM中點(diǎn),所以MC∥OP. MC?平面PBD,OP?平面PBD,所以MC∥平面PBD. 8.(1)證明 連接BE,GH,AC,在△AED'中, ED'2=AE2+AD'2,可得AD'⊥AE. 又DC==2, AC=2,可得AC2+AD'2=CD'2,可得AD'⊥AC. 因?yàn)锳E∩AC=A,所以AD'⊥平面ABCE,所以AD'⊥BE. 又G,H分別為D'B,D'E的中點(diǎn), 所以GH∥BE,所以GH⊥D'A. (2)解 設(shè)三棱錐C-D'BE的體積為V, 則V=S△BCE·AD'=×2×2×2.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!