江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題二 立體幾何 2.3 專(zhuān)題提能—“立體幾何”專(zhuān)題提能課講義(含解析)
《江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題二 立體幾何 2.3 專(zhuān)題提能—“立體幾何”專(zhuān)題提能課講義(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題二 立體幾何 2.3 專(zhuān)題提能—“立體幾何”專(zhuān)題提能課講義(含解析)(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題二 立體幾何 2.3 專(zhuān)題提能—“立體幾何”專(zhuān)題提能課講義(含解析) 失誤1 因不會(huì)構(gòu)造適當(dāng)?shù)膸缀误w而解題受阻 [答案] π [點(diǎn)評(píng)] 學(xué)生對(duì)于本題往往不知道球心的位置而導(dǎo)致不會(huì)解答.把該三棱錐補(bǔ)成正方體來(lái)確定球心的位置是求解本題的關(guān)鍵之處,正方體的體對(duì)角線就是外接球直徑. 失誤2 因不會(huì)利用側(cè)面展開(kāi)圖而解題受阻 [例2] 如圖所示,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=4 cm,AD=2 cm,AA1=3 cm,則在長(zhǎng)方體表面上連結(jié)A,C1兩點(diǎn)的所有曲線長(zhǎng)度最小值為_(kāi)_______cm. [解析] 將長(zhǎng)方體的面分別展開(kāi)平鋪,當(dāng)
2、四邊形AA1D1D和四邊形DD1C1C在同一平面內(nèi)時(shí),最小距離為四邊形AA1C1C的對(duì)角線,長(zhǎng)度是=;當(dāng)四邊形AA1D1D和四邊形A1B1C1D1在同一平面內(nèi)時(shí),最小距離為四邊形AB1C1D的對(duì)角線,長(zhǎng)度是=;四邊形ABCD和四邊形CDD1C1在同一平面內(nèi)時(shí),最小距離為四邊形 ABC1D1的對(duì)角線,長(zhǎng)度是=,所以最小距離是 cm. [答案] [點(diǎn)評(píng)] 該題考查的是幾何體的表面距離的最值問(wèn)題,結(jié)合平面內(nèi)連結(jié)兩點(diǎn)的直線段是最短的,所以將長(zhǎng)方體的側(cè)面沿著不同的方向展開(kāi),使得兩個(gè)點(diǎn)落在同一平面內(nèi),利用勾股定理來(lái)求解,選出最小的那個(gè),容易出錯(cuò)的地方在于考慮不全面,沿著一個(gè)方向展開(kāi)求得結(jié)果,從而出
3、現(xiàn)錯(cuò)誤,所以一定要注意應(yīng)該有三條路徑. 失誤3 因定理表述不嚴(yán)謹(jǐn)而導(dǎo)致丟分 [例3] 如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,求證:平面BC1D∥平面AB1D1. [證明] ∵BD∥B1D1,BD?平面AB1D1,B1D1?平面AB1D1. ∴BD∥平面AB1D1, 同理BC1∥平面AB1D1. 又∵BD∩BC1=B,BD?平面BC1D,BC1?平面BC1D, ∴平面BC1D∥平面AB1D1. [點(diǎn)評(píng)] 在證明面面平行時(shí),有的同學(xué)喜歡跳步,直接由線線平行得到面面平行,少了由線線平行到線面平行的過(guò)程,在考試中是要被扣分的.立體幾何邏輯性非常強(qiáng),證明時(shí)要嚴(yán)格按照定理的
4、要求來(lái)進(jìn)行書(shū)寫(xiě),切不可漏條件. 策略1 割補(bǔ)法:求不規(guī)則幾何體的體積 [例1] 如圖所示,在多面體ABCDEF中,已知ABCD是邊長(zhǎng)為1的正方形,且△ADE,△BCF均為正三角形,EF∥AB,EF=2,則該多面體的體積為_(kāi)_______. [解析] 法一:如圖所示,分別過(guò)A,B作EF的垂線AG,BH,垂足分別為G,H.連結(jié)DG,CH,容易求得EG=HF=. 所以AG=GD=BH=HC=,S△AGD=S△BHC=××1=,V=VE-ADG+VF-BHC+VAGD-BHC=×2+×1=. 法二:如圖所示,將該多面體補(bǔ)成一個(gè)斜三棱柱ADE-MNF,點(diǎn)F到平面AMND的距離為,
5、則V=VADE-MNF-VF-MNCB=×1××2-×1×1×=. [答案] [點(diǎn)評(píng)] 本題中所用的兩種方法實(shí)際上就是求不規(guī)則幾何體體積的兩種基本方法.法一是對(duì)不規(guī)則幾何體進(jìn)行分割.法二則是在原不規(guī)則幾何體的基礎(chǔ)上補(bǔ)上一個(gè)幾何體,使之成為規(guī)則幾何體. 策略2 等積法:求三棱錐的體積 [例2] 如圖,在正三棱柱ABC-A1B1C1中,已知AB=AA1=3,點(diǎn)P在棱CC1上,則三棱錐P-ABA1的體積為_(kāi)_______. [解析] 三棱錐P-ABA1的體積為V三棱錐P-ABA1=V三棱錐C-ABA1=V三棱錐A1-ABC=S△ABC·AA1=××32×3=. [答案]
6、[點(diǎn)評(píng)] 等積法包括等面積法和等體積法.利用等積法的前提是平面圖形(或立體圖形)的面積(或體積)通過(guò)已知條件可以得到,利用等積法可以求解幾何圖形的高, 特別是在求三角形的高(點(diǎn)到線的距離)或三棱錐的高(點(diǎn)到面的距離)時(shí),通常采用此法解決問(wèn)題. 1.函數(shù)與方程思想——解決立體幾何中的最值問(wèn)題 [例1] 如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O.D,E,F(xiàn)為圓O上的點(diǎn),△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形.沿虛線剪開(kāi)后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D,E,F(xiàn)重合,得到三棱錐.當(dāng)△
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 慈母情深 (3)
- 國(guó)際貿(mào)易第七章
- 高考政治一輪復(fù)習(xí)經(jīng)濟(jì)生活第五課企業(yè)與勞動(dòng)者課件
- 計(jì)劃生育內(nèi)容培訓(xùn)
- 人體空間醫(yī)學(xué)和治療癌癥專(zhuān)家講座
- 部編版六年級(jí)下冊(cè)語(yǔ)文語(yǔ)文園地一課件
- 湘教版八上數(shù)學(xué)練習(xí)題---全等三角形的判定3—AAS課件
- 幼兒園看圖寫(xiě)話過(guò)河
- 散文兩篇-PPT
- 數(shù)控機(jī)床的故障診療和維修技術(shù)專(zhuān)家講座
- 部編版二年級(jí)語(yǔ)文下冊(cè)第八單元《祖先的搖籃》課件
- 部編版二年級(jí)下冊(cè)語(yǔ)文課件-課文七-當(dāng)世界年紀(jì)還小的時(shí)候-帶朗讀音頻-
- 第單元概念社區(qū)衛(wèi)生服務(wù)優(yōu)秀文檔
- 西方經(jīng)濟(jì)學(xué)的主要流派會(huì)三小伙伴們組
- 部編版二年級(jí)上冊(cè)語(yǔ)文23-紙船和風(fēng)箏-課件