2、,原不等式可化為x2<1<x3,解得x∈?;當x<0時,原不等式可化為解得x<-1,故選A.
3.已知函數f(x)=若f(x)≥1,則x的取值范圍是( )
A.(-∞,-1] B.[1,+∞)
C.(-∞,0]∪[1,+∞) D.(-∞,-1]∪[1,+∞)
解析:選D 當x≤0時,由x2≥1,得x≤-1;
當x>0時,由2x-1≥1,得x≥1,
綜上可知x的取值范圍為(-∞,-1]∪[1,+∞).
4.(xx·臨川模擬)關于x的不等式>0的解集為P,不等式log2(x2-1)≤1的解集為Q.若Q?P,則a的取值范圍為( )
A.-1<a<0 B
3、.-1≤a≤1
C.a>1 D.a≥1
解析:選B 當a≥-1時,P=(-∞,-1)∪(a,+∞),
當a<-1時,P=(-∞,a)∪(-1,+∞).
由得,
∴Q=[-,-1)∪(1,].
∵Q?P,∴P=(-∞,-1)∪(a,+∞).
∴-1≤a≤1.故選B.
5.(xx·杭州調研)若不等式|8x+9|<7和不等式ax2+bx>2的解集相同,則實數a、b的值分別為( )
A.a=-8,b=-10 B.a=-4,b=-9
C.a=-1,b=9 D.a=-1,b=2
解析:選B 據題意可得|8x+9|<7的解集是x-2<x<-,故由是一元二次不
4、等式ax2+bx>2的解集,可知x=-2,x=-是方程ax2+bx-2=0的兩個根,由根與系數的關系可得-2×=-=,解得a=-4,-2+=-=-,解得b=-9.故選B.
6.(xx·江西師大附中測試)在R上定義運算:xy=,若關于x的不等式x(x+1-a)>0的解集是{x|-2≤x≤2,x∈R}的子集,則實數a的取值范圍是( )
A.-2≤a≤2 B.-1≤a≤2
C.-3≤a<-1或-1<a≤1 D.-3≤a≤1
解析:選D x(x+1-a)>0即為>0整理得>0即<0,設A為關于x的不等式x(x+1-a)>0的解集,當A為?時,則a+1=0,解得a=-1
5、;當a+1>0即a>-1時,A=(0,a+1)?[-2,2],則a+1≤2得a≤1,所以-1<a≤1;當a+1<0即a<-1時,A=(a+1,0)?[-2,2],則a+1≥-2,得a≥-3,所以-3≤a<-1.綜上可知-3≤a≤1,故選D.
7.不等式3x2-2x-1<0成立的一個必要不充分條件是( )
A. B.∪(1,+∞)
C. D.(-1,1)
解析:選D 由3x2-2x-1<0解得-<x<1,而(-1,1),所以(-1,1)是3x2-2x-1<0成立的一個必要不充分條件.
8.(xx·重慶高考)關于x的不等式x2-2ax-8a2<0(a>0)的解集為(
6、x1,x2),且x2-x1=15 ,則a= ( )
A. B.
C. D.
解析:選A 方法一:∵不等式x2-2ax-8a2<0的解集為(x1,x2),
∴x1,x2是方程x2-2ax-8a2=0的兩根.
由韋達定理知
∴x2-x1===15,
又a>0,∴a=.故選A.
方法二:由x2-2ax-8a2<0,得(x+2a)(x-4a)<0,
∵a>0,∴不等式x2-2ax-8a2<0的解集為(-2a,4a),
又不等式x2-2ax-8a2<0的解集為(x1,x2),
∴x1=-2a,x2=4a.
∵x2-x1=15,∴4a-(-2a)=15,
7、
解得a=.故選A.
9.已知f(x)=則不等式x+xf(x)≤2的解集是__________.
解析:(-∞,1] (1)當x≥0時,原不等式可化為x2+x-2≤0,解得-2≤x≤1,所以0≤x≤1.
(2)當x<0時,原不等式可化為x2-x+2≥0,得2+≥0恒成立,所以x<0.
綜合(1)(2)知x≤1,所以不等式的解集為(-∞,1].
10.已知不等式ax2+bx+c<0的解集為{x|-2<x<1},則不等式cx2+bx+a>c(2x-1)+b的解集為________.
解析: 由題意可知a>0,且-2,1是方程ax2+bx+c=0的兩個根,則解得
所以不等式ax2+
8、bx+a>c(2x-1)+b可化為-2ax2+ax+a>-2a(2x-1)+a,整理得2x2-5x+2<0,解得<x<2.故不等式的解集為.
11.某商家一月份至五月份累計銷售額達3 860萬元,預測六月份銷售額為500萬元,七月份銷售額比六月份遞增x%,八月份銷售額比七月份遞增x%,九、十月份銷售總額與七、八月份銷售總額相等,若一月至十月份銷售總額至少達7 000萬元,則x的最小值是________.
解析:20 七月份:500(1+x%),八月份:500(1+x%)2.
所以一至十月份的銷售總額為
3 860+500+2[500(1+x%)+500(1+x%)2]≥7 000,
9、
解得1+x%≤-2.2(舍)或1+x%≥1.2,
∴xmin=20.
12.(xx·武漢外國語學校月考)已知函數f(x)=x2+ax+b(a,b∈R)的值域為[0,+∞),若關于x的不等式f(x)<c的解集為(m,m+6),則實數c的值為________.
解析:9 由值域為[0,+∞),當x2+ax+b=0時有Δ=a2-4b=0,即b=,∴f(x)=x2+ax+b=x2+ax+=2,∴f(x)=2<c解得-<x+<,--<x<-.∵不等式f(x)<c的解集為(m,m+6),∴-=2=6,解得c=9.
13.(xx·廣東六校聯考)設集合A={x|x2<4},B=x1<.
(1)
10、求集合A∩B;
(2)若不等式2x2+ax+b<0的解集為B,求a,b的值.
解:A={x|x2<4}={x|-2<x<2},
B==={x|-3<x<1}.
(1)A∩B={x|-2<x<1}.
(2)因為2x2+ax+b<0的解集為B={x|-3<x<1},
所以-3和1為2x2+ax+b=0的兩根,
所以解得a=4,b=-6.
1.若不等式x2+ax-2>0在區(qū)間[1,5]上有解,則實數a的取值范圍是( )
A. B.
C.(1,+∞) D.
解析:選A 令f(x)=x2+ax-2,由f(0)=-2<0知不等式在區(qū)間[1,5]上有解的充要條件
11、是f(5)>0,解得a>-.選A
2.(xx·山西山大附中月考)已知a∈Z,關于x的一元二次不等式x2-6x+a≤0的解集中有且僅有3個整數,則所有符合條件的a的值之和是( )
A.13 B.18
C.21 D.26
解析:選C 設f(x)=x2-6x+a,其圖象是開口向上,對稱軸是x=3的拋物線,如圖所示.若關于x的一元二次不等式x2-6x+a≤0的解集中有且僅有3個整數,則,即,解得5<a≤8,又a∈Z,∴a=6,7,8.則所有符合條件的a的值之和是6+7+8=21.故選C.
3.已知函數f(x)=x2+4x+4,若存在實數t,當x∈[1,t]時,
12、不等式f(x+a)≤4x恒成立,則實數t的最大值是( )
A.4 B.7
C.8 D.9
解析:選D 由題意得(x+a)2+4(x+a)+4≤4x即x2+2ax+a2+4a+4≤0當x∈[1,t]時恒成立,令g(x)=x2+2ax+a2+4a+4,則g(1)≤0,g(t)≤0.由g(1)≤0得a2+6a+5≤0,解得-5≤a≤-1.由g(t)≤0得t2+2at+(a+2)2 ≤0,
令h(a)=t2+2at+(a+2)2,則即,解得1≤t≤9,所以t的最大值為9.故選D.
4.(xx·廣州測試)已知不等式ax2-3x+6>4的解集為{x|x<1或x>b}.
(1)求a,b;
(2)解不等式ax2-(ac+b)x+bc<0(c∈R).
解:(1)由題意知x1=1,x2=b是方程ax2-3x+2=0的兩根,
由根與系數的關系知解得
(2)由ax2-(ac+b)x+bc<0,得x2-(2+c)x+2c<0,
即(x-2)(x-c)<0.
①當c>2時,解得2<x<c;
②當c<2時,解得c<x<2;
③當c=2時,不等式為(x-2)2<0無解.
綜上,當c>2時,不等式的解集為{x|2<x<c};
當c=2時,不等式的解集為?;
當c<2時,不等式的解集為{x|c<x<2}.