影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2022年高考數(shù)學(xué)一輪復(fù)習(xí) 大題專項突破 高考大題專項5 直線與圓錐曲線(壓軸大題) 文 北師大版

上傳人:xt****7 文檔編號:106795384 上傳時間:2022-06-14 格式:DOC 頁數(shù):13 大?。?.99MB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學(xué)一輪復(fù)習(xí) 大題專項突破 高考大題專項5 直線與圓錐曲線(壓軸大題) 文 北師大版_第1頁
第1頁 / 共13頁
2022年高考數(shù)學(xué)一輪復(fù)習(xí) 大題專項突破 高考大題專項5 直線與圓錐曲線(壓軸大題) 文 北師大版_第2頁
第2頁 / 共13頁
2022年高考數(shù)學(xué)一輪復(fù)習(xí) 大題專項突破 高考大題專項5 直線與圓錐曲線(壓軸大題) 文 北師大版_第3頁
第3頁 / 共13頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)一輪復(fù)習(xí) 大題專項突破 高考大題專項5 直線與圓錐曲線(壓軸大題) 文 北師大版》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)一輪復(fù)習(xí) 大題專項突破 高考大題專項5 直線與圓錐曲線(壓軸大題) 文 北師大版(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)一輪復(fù)習(xí) 大題專項突破 高考大題專項5 直線與圓錐曲線(壓軸大題) 文 北師大版 1.(2018江西上饒一模,20)已知橢圓M:=1(a>b>0)的離心率為,點P1, 在橢圓M上. (1)求橢圓M的方程; (2)經(jīng)過橢圓M的右焦點F的直線l與橢圓M交于C,D兩點,A,B分別為橢圓M的左、右頂點,記△ABD與△ABC的面積分別為S1和S2,求|S1-S2|的取值范圍. 2.(2018寧夏銀川一中四模,20)已知橢圓C:=1(a>b>0)的左、右焦點分別為F1,F2,點M在橢圓上,有|MF1|+|MF2|=4,橢圓的離心率為e=. (1)求橢圓C

2、的標準方程; (2)已知N(4,0),過點N作斜率為k(k>0)的直線l與橢圓交于A,B不同兩點,線段AB的中垂線為l',記l'的縱截距為m,求m的取值范圍. 3.(2018北京海淀區(qū)二模,20)已知橢圓C:x2+2y2=1的左右頂點分別為A1,A2. (1)求橢圓C的長軸長與離心率; (2)若不垂直于x軸的直線l與橢圓C相交于P,Q兩點,直線A1P與A2Q交于點M,直線A1Q與A2P交于點N.求證:直線MN垂直于x軸. 4.(2018廣東珠海質(zhì)檢,20)已知拋物線C1:y2=2px(p>0),圓C2:x2+y2=4,直線l:y=kx+

3、b與拋物線C1相切于點M,與圓C2相切于點N. (1)若直線l的斜率k=1,求直線l和拋物線C1的方程; (2)設(shè)F為拋物線C1的焦點,設(shè)△FMN,△FON的面積分別為S1,S2,若S1=λS2,求λ的取值范圍. 5.(2018重慶巴蜀中學(xué)適應(yīng)性考試(七),20)已知橢圓=1(a>b>0)與直線y=x-2相切,設(shè)橢圓的上頂點為M,F1,F2是橢圓的左、右焦點,且△MF1F2為等腰直角三角形. (1)求橢圓的標準方程; (2)直線l過點N0,- 交橢圓于A,B兩點,直線MA、MB分別與橢圓的短軸為直徑的圓交于S,T兩點,求證:O,S,T三點共線.

4、 6.(2018河北衡水聯(lián)考,20)已知橢圓=1(a>b>0)的離心率e=,左、右焦點分別為F1,F2,且F2與拋物線y2=4x的焦點重合. (1)求橢圓的標準方程; (2)若過F1的直線交橢圓于B,D兩點,過F2的直線交橢圓于A,C兩點,且AC⊥BD,求|AC|+|BD|的最小值. 突破2 圓錐曲線中的定點、定值與存在性問題                     1.(2018福建廈門質(zhì)檢一,20)設(shè)O為坐標原點,橢圓C:=1(a>b>0)的左焦點為F,離心率為.直線l:y=kx+m(m>0)與C交于A,B兩點,AF的中點為M,|O

5、M|+|MF|=5. (1)求橢圓C的方程; (2)設(shè)點P(0,1),=-4,求證:直線l過定點,并求出定點的坐標. 2.(2018東北三省三校(哈師大附中、東北師大附中、遼寧省實驗中學(xué))一模,20)已知橢圓C:=1(a>b>0)的離心率為,F1(-c,0),F2(c,0)為橢圓C的左、右焦點,M為橢圓C上的任意一點,△MF1F2的面積的最大值為1,A、B為橢圓C上任意兩個關(guān)于x軸對稱的點,直線x=與x軸的交點為P,直線PB交橢圓C于另一點E. (1)求橢圓C的標準方程; (2)求證:直線AE過定點. 3.(2018廣東一模,20)已

6、知橢圓C:=1(a>b>0)的離心率為,且C過點1,. (1)求橢圓C的方程; (2)若直線l與橢圓C交于P,Q兩點(點P,Q均在第一象限),且直線OP,l,OQ的斜率成等比數(shù)列,證明:直線l的斜率為定值. 4.已知定直線l:y=x+3,定點A(2,1),以坐標軸為對稱軸的橢圓C過點A且與l相切. (1)求橢圓的標準方程; (2)橢圓的弦AP,AQ的中點分別為M,N,若MN平行于l,則OM,ON斜率之和是否為定值?若是定值,請求出該定值;若不是定值,請說明理由. 5.(2018江西六校聯(lián)考,20)已知F1,F2分別

7、是橢圓C:=1(a>b>0)的左、右焦點,其中右焦點為拋物線y2=4x的焦點,點M-1,在橢圓C上. (1)求橢圓C的標準方程; (2)設(shè)與坐標軸不垂直的直線l過F2與橢圓C交于A,B兩點,過點M-1,且平行直線l的直線交橢圓C于另一點N,若四邊形MNBA為平行四邊形,試問直線l是否存在?若存在,請求出l的斜率;若不存在,請說明理由. 6.(2018遼寧省部分重點中學(xué)協(xié)作體模擬,20)已知M是橢圓C:=1(a>b>0)上的一點,F1,F2是該橢圓的左右焦點,且|F1F2|=2. (1)求橢圓C的方程; (2)設(shè)點A,B是橢圓C上與坐標原點O不共線的兩點,直

8、線OA,OB,AB的斜率分別為k1,k2,k3,且k1k2=k2.試探究|OA|2+|OB|2是否為定值,若是,求出定值,若不是,說明理由. 高考大題專項五 直線與圓錐曲線壓軸大題 突破1 圓錐曲線中的最值、范圍、證明問題 1.解 (1)因為e=,橢圓M過點P1, ,所以c=1,a=2. 所以橢圓M方程為=1. (2)當直線l無斜率時,直線方程為x=1, 此時C1,-,D1,,△ABD,△ABC面積相等,|S1-S2|=0; 當直線l斜率存在(顯然k≠0)時,設(shè)直線方程為y=k(x-1), 設(shè)C(x1,y1),D(x2,y2). 由 消去y得(3+4k2)x2-8

9、k2x+4k2-12=0, 顯然Δ>0,方程有根,且x1+x2=,x1x2=, 此時|S1-S2|=2||y2|-|y1||=2|y2+y1|=, 因為k≠0,上式=k=±時等號成立, 所以|S1-S2|的最大值為, 所以0≤|S1-S2|≤. 2.解 (1)因為|MF1|+|MF2|=4,所以2a=4,所以a=2. 因為e=,所以c=1, 所以b2=a2-c2=3,所以橢圓C的標準方程為=1. (2)由題意可知直線l的斜率存在,設(shè)l:y=k(x-4),A(x1,y1),B(x2,y2), 由消去y得 (4k2+3)x2-32k2x+64k2-12=0, x1+x2=,

10、x1x2=, 又Δ=-4(4k2+3)(64k2-12)>0,解得-0恒成立,所以m=在k∈0,上為增函數(shù),所以0

11、設(shè)直線A1P的方程為y=k1(x+),A2Q的方程為y=k2(x-), 聯(lián)立直線A1P與直線A2Q方程得xM=. 同理可得xN=. 下面證明k1k4=-. 設(shè)P(x0,y0),則+2=2. 所以k1k4==-. 同理k2k3=-. 所以xN==xM. 所以直線MN垂直于x軸. 4.解 (1)由題設(shè)知l:x-y+b=0,且b>0,由l與C2相切知,C2(0,0)到l的距離d==2,得b=2,所以l:x-y+2=0.將l與C1的方程聯(lián)立消x得y2-2py+4p=0, 其Δ=4p2-16p=0得p=4,∴C1:y2=8x. 綜上所述,l:x-y+2=0,C1:y2=8x.

12、 (2)不妨設(shè)k>0,根據(jù)對稱性,k>0得到的結(jié)論與k<0得到的結(jié)論相同. 此時b>0,又知p>0,設(shè)M(x1,y1),N(x2,y2), 由 消去y得k2x2+2(kb-p)x+b2=0, 由Δ=4(kb-p)2-4k2b2=0, 得p=2kb,M, 由l與C2切于點N知C2(0,0)到l:kx-y+b=0的距離d==2,得b=2,則p=4k, 故M,4. 由得N-, 故|MN|=|xM-xN|==. F,0到l:kx-y+b=0的距離d0==2k2+2, 所以S1=S△FMN=|MN|d0=, 又因為S2=S△FON=|OF|·|yN|=2k, 所以λ==+2(k

13、2+1)=2k2++3≥2+3,當且僅當2k2=即k=時取等號, 與上同理可得,k<0時亦是同上結(jié)論. 綜上所述,λ的取值范圍是[3+2,+∞). 5.(1)解 ∵△MF1F2為等腰直角三角形, ∴b=c,a=b, ∴橢圓的方程為x2+2y2=2b2. 由消去x整理得4y2+8y+16-2b2=0, ∵橢圓與直線相切, ∴Δ=128-16(16-2b2)=0, 解得b2=4. ∴橢圓的標準方程為x2+2y2=8,即=1. (2)證明由題意得直線AB的斜率存在,設(shè)直線AB的方程為y=kx-, 由 消去y整理得(1+2k2)x2-kx-=0, ∵直線AB與橢圓交于兩點,

14、 ∴Δ=+4×(2k2+1)=(9k2+4)>0. 設(shè)點A(x1,y1),B(x2,y2), 則x1+x2=,x1x2=, 又M(0,2), ∴=x1x2+(y1-2)(y2-2) =x1x2+kx1-kx2- =(1+k2)x1x2-k(x1+x2)+ =- =-+1=0. ∴MA⊥MB, ∴∠SMT=. ∵圓的直徑為橢圓的短軸,∴圓心為原點O, ∴點O,S,T三點共線. 6.解 (1)拋物線y2=4x的焦點為(1,0),所以c=1,又因為e=,所以a=, 所以b2=2,所以橢圓的標準方程為=1. (2)①當直線BD的斜率k存在且k≠0時, 直線BD的方程為

15、y=k(x+1),代入橢圓方程=1, 化簡得(3k2+2)x2+6k2x+3k2-6=0. 設(shè)B(x1,y1),D(x2,y2),則x1+x2=-,x1x2=, |BD|=·|x1-x2|=. 易知直線AC的斜率為-, 所以|AC|=, |AC|+|BD|=4(k2+1)= =, 當k2=1,即k=±1時,上式取等號,故|AC|+|BD|的最小值為. ②當直線BD的斜率不存在或等于零時,易得|AC|+|BD|=. 綜上所述,|AC|+|BD|的最小值為. 突破2 圓錐曲線中的定點、定值與存在性問題 1.解 (1)設(shè)橢圓的右焦點為F1,則OM為△AFF1的中位線. ∴O

16、M=AF1,MF=AF, ∴|OM|+|MF|==a=5, ∵e=, ∴c=2, ∴b=, ∴橢圓C的方程為=1. (2)設(shè)A(x1,y1),B(x2,y2), 聯(lián)立 消去y整理得 (1+5k2)x2+10mkx+5m2-25=0. ∴Δ>0,x1+x2=-,x1x2=, ∴y1+y2=k(x1+x2)+2m=,y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=, ∵P(0,1),=-4, ∴(x1,y1-1)·(x2,y2-1)=x1x2+y1y2-(y1+y2)+1=-4, ∴+5=0,整理得3m2-m-10=0, 解得m=2或m

17、=-(舍去). ∴直線l過定點(0,2). 2.(1)解 ∵當M為橢圓C的短軸端點時,△MF1F2的面積的最大值為1, ∴×2c×b=1,∴bc=1,∵e=,a2=b2+c2,∴a=,b=1,∴橢圓C的標準方程為+y2=1. (2)證明 設(shè)B(x1,y1),E(x2,y2),A(x1,-y1),且x1≠x2, ∵x==2,∴P(2,0),由題意知BP的斜率必存在,設(shè)BP:y=k(x-2),代入+y2=1得(2k2+1)x2-8k2x+8k2-2=0,由Δ>0得k2<,x1+x2=,x1·x2=. ∵x1≠x2∴AE斜率必存在,AE:y+y1=(x-x1), 由對稱性易知直線AE過

18、的定點必在x軸上,則當y=0時,得x=+x1== = =1,即在k2<的條件下,直線AE過定點(1,0). 3.(1)解 由題意可得解得 故橢圓C的方程為+y2=1. (2)證明 由題意可知直線l的斜率存在且不為0,設(shè)直線l的方程為y=kx+m(m≠0), 由消去y整理得(1+4k2)x2+8kmx+4(m2-1)=0, ∵直線l與橢圓交于兩點, ∴Δ=64k2m2-16(1+4k2)(m2-1)=16(4k2-m2+1)>0. 設(shè)點P,Q的坐標分別為(x1,y1),(x2,y2), 則x1+x2=,x1x2=, ∴y1y2=(kx1+m)(kx2+m)=k2x1x2+k

19、m(x1+x2)+m2. ∵直線OP,l,OQ的斜率成等比數(shù)列, ∴k2== , 整理得km(x1+x2)+m2=0, ∴+m2=0, 又m≠0,所以k2=, 結(jié)合圖像(圖略)可知k=-,故直線l的斜率為定值. 4.解 (1)設(shè)橢圓的方程為mx2+ny2=1(m>0,n>0,m≠n), 橢圓C過點A,所以4m+n=1. ① 將y=x+3代入橢圓方程化簡得(m+n)x2+6nx+9n-1=0. 因為直線l與橢圓C相切, 所以Δ=(6n)2-4(m+n)(9n-1)=0, ② 解①②可得m=,n=. 所以橢圓的標準方程為=1. (2)設(shè)點P(x1,y1),Q(x2,y

20、2), 則有M,N. 由題意可知PQ∥MN,所以kPQ=kMN=1. 設(shè)直線PQ的方程為y=x+t(-30, 所以 ③ kOM+kON=, 通分后可變形得到kOM+kON=, 將③式代入得kOM+kON==0. 當t=0時,直線PQ的方程為y=x,易得P(),Q(-,-),則M,N,所以kOM+kON==0. 所以O(shè)M,ON斜率之和為定值0. 5.解 (1)由y2=4x的焦點為(1,0)可知橢圓C的焦點為F1(-1,0),F2(1,0),

21、 又點M-1,在橢圓上,所以 解得 所以橢圓C的標準方程為+y2=1. (2)由題意可設(shè)直線l的方程為y=k(x-1),A(x1,y1),B(x2,y2),由 消去y,得(1+2k2)x2-4k2x+2k2-2=0,所以x1+x2=,x1x2=. 所以|AB|=. 設(shè)直線MN的方程為y-=k(x+1),M(x3,y3),N(x4,y4), 由 消去y,得(1+2k2)x2+(4k2+2k)x+(2k2+2k-1)=0,因為x3=-1,所以x4=-,|MN|=|x3-x4|= . 因為四邊形MNBA為平行四邊形,所以|AB|=|MN|,即,k=-, 但是,直線l的方程y=

22、-(x-1),即x+2y-1=0過點M-1,,即直線AB與直線MN重合,不符合題意,所以直線l不存在. 6.解 (1)由題意,知F1(-,0),F2(,0),根據(jù)橢圓定義得|MF1|+|MF2|=2a, 所以2a= + =4, 所以a2=4,b2=a2-c2=1, 所以橢圓C的方程為+y2=1. (2)|OA|2+|OB|2為定值.設(shè)直線AB:y=kx+m(km≠0),A(x1,y1),B(x2,y2),由 消去y得 (1+4k2)x2+8kmx+4m2-4=0, 則Δ=(8km)2-16(m2-1)(4k2+1)>0, x1+x2=-,x1x2=, 因為k1k2=k2,所以=k2, 即km(x1+x2)+m2=0(m≠0),解得k2=, 所以|OA|2+|OB|2=-2x1x2]+2=5, 所以|OA|2+|OB|2=5.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!