影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2022年高考總復(fù)習(xí)文數(shù)(北師大版)講義:第10章 第02節(jié) 古典概型 Word版含答案

上傳人:xt****7 文檔編號:106922072 上傳時間:2022-06-14 格式:DOC 頁數(shù):9 大?。?68KB
收藏 版權(quán)申訴 舉報 下載
2022年高考總復(fù)習(xí)文數(shù)(北師大版)講義:第10章 第02節(jié) 古典概型 Word版含答案_第1頁
第1頁 / 共9頁
2022年高考總復(fù)習(xí)文數(shù)(北師大版)講義:第10章 第02節(jié) 古典概型 Word版含答案_第2頁
第2頁 / 共9頁
2022年高考總復(fù)習(xí)文數(shù)(北師大版)講義:第10章 第02節(jié) 古典概型 Word版含答案_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考總復(fù)習(xí)文數(shù)(北師大版)講義:第10章 第02節(jié) 古典概型 Word版含答案》由會員分享,可在線閱讀,更多相關(guān)《2022年高考總復(fù)習(xí)文數(shù)(北師大版)講義:第10章 第02節(jié) 古典概型 Word版含答案(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考總復(fù)習(xí)文數(shù)(北師大版)講義:第10章 第02節(jié) 古典概型 Word版含答案 考點 高考試題 考查內(nèi)容 核心素養(yǎng) 古典概型 xx·全國卷Ⅱ·T11·5分 利用古典概型概率公式求解 數(shù)學(xué)運算 xx·天津卷·T3·5分 利用古典概型概率公式求解 數(shù)學(xué)運算 xx·山東卷·T16·12分 列出基本事件空間利用古典概型的概率公式求解 數(shù)學(xué)運算 xx·全國卷Ⅰ·T3·5分 列出基本事件空間利用古典概型的概率公式求解 數(shù)學(xué)運算 xx·全國卷Ⅲ·T5·5分 列出基本事件空間利用古典概型的概率公式求解 數(shù)學(xué)運算 xx·全國卷Ⅰ·T4·5分 列出基本事件空間

2、利用古典概型的概率公式求解 數(shù)學(xué)運算 命題分析 古典概型是高考??贾R,一般是根據(jù)題意列出基本事件空間,然后利用古典概型的概率公式求概率,一般以選擇題形式出現(xiàn),有時候也出在解答題中,難度不大. 1.在計算古典概型中試驗的所有結(jié)果數(shù)和事件發(fā)生結(jié)果時,易忽視它們是否是等可能的. 2.基本事件的探求方法 (1)列舉法:適合于較簡單的試驗. (2)樹狀圖法:適合于較為復(fù)雜的問題中的試驗結(jié)果的探求.另外在確定試驗結(jié)果時,(x,y)可以看成是有序的,如(1,2)與(2,1)不同;有時也可以看成是無序的,如(1,2)與(2,1)相同. 1.判斷下列結(jié)論的正誤(正確的打“√”,錯誤的打“×

3、”) (1)“在適宜條件下,種下一粒種子觀察它是否發(fā)芽”屬于古典概型,其基本事件是“發(fā)芽與不發(fā)芽”.(  ) (2)擲一枚硬幣兩次,出現(xiàn)“兩個正面”“一正一反”“兩個反面”,這三個事件是等可能事件.(  ) (3)在古典概型中,如果事件A中基本事件構(gòu)成集合A,所有的基本事件構(gòu)成集合I,則事件A的概率為.(  ) 答案:(1)× (2)× (3)√ 2.(教材習(xí)題改編)一個口袋內(nèi)裝有2個白球和3個黑球,則先摸出1個白球后放回的條件下,再摸出1個白球的概率是(  ) A.   B.   C.   D. 解析:選C 先摸出1個白球后放回,再摸出1個白球的概率,實質(zhì)上就是第二次摸到白球

4、的概率,因為袋內(nèi)裝有2個白球和3個黑球,因此概率為. 3.(xx·天津卷)有5支彩筆(除顏色外無差別),顏色分別為紅、黃、藍(lán)、綠、紫.從這5支彩筆中任取2支不同顏色的彩筆,則取出的2支彩筆中含有紅色彩筆的概率為(  ) A. B. C. D. 解析:選C 從5支彩筆中任取2支不同顏色彩筆的取法有紅黃、紅藍(lán)、紅綠、紅紫、黃藍(lán)、黃綠、黃紫、藍(lán)綠、藍(lán)紫、綠紫,共10種,其中取出的2支彩筆中含有紅色彩筆的取法有紅黃、紅藍(lán)、紅綠、紅紫,共4種,所以所求概率P==.故選C. 4.(教材習(xí)題改編)同時擲兩個骰子,向上點數(shù)不相同的概率為________. 解析:1-=. 答案: 基

5、本事件與古典概型的判斷 [明技法] 一個試驗是否為古典概型,在于這個試驗是否具有古典概型的兩個特點——有限性和等可能性,只有同時具備這兩個特點的概型才是古典概型. [提能力] 【典例1】 有兩顆正四面體的玩具,其四個面上分別標(biāo)有數(shù)字1、2、3、4,下面做投擲這兩顆正四面體玩具的試驗:用(x,y)表示結(jié)果,其中x表示第1顆正四面體玩具出現(xiàn)的點數(shù),y表示第2顆正四面體玩具出現(xiàn)的點數(shù).試寫出: (1)試驗的基本事件; (2)事件“出現(xiàn)點數(shù)之和大于3”包含的基本事件; (3)事件“出現(xiàn)點數(shù)相等”包含的基本事件. 解:(1)這個試驗的基本事件為(1,1),(1,2),(1,3),(1,4

6、),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4). (2)事件“出現(xiàn)點數(shù)之和大于3”包含的基本事件為(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4). (3)事件“出現(xiàn)點數(shù)相等”包含的基本事件為(1,1),(2,2),(3,3),(4,4). 【典例2】 袋中有大小相同的5個白球,3個黑球和3個紅球,每球有一個區(qū)別于其他球的編號,從中摸出一個球. (1)有多少種不同的摸法?如果把每個球

7、的編號看作一個基本事件建立概率模型,該模型是不是古典概型? (2)若按球的顏色為劃分基本事件的依據(jù),有多少個基本事件?以這些基本事件建立概率模型,該模型是不是古典概型? 解:(1)由于共有11個球,且每個球有不同的編號,故共有11種不同的摸法. 又因為所有球大小相同,因此每個球被摸中的可能性相等,故以球的編號為基本事件的概率模型為古典概型. (2)由于11個球共有3種顏色,因此共有3個基本事件,分別記為A:“摸到白球”,B:“摸到黑球”,C:“摸到紅球”, 又因為所有球大小相同,所以一次摸球每個球被摸中的可能性均為,而白球有5個, 故一次摸球摸到白球的可能性為, 同理可知摸到黑球

8、、紅球的可能性均為, 顯然這三個基本事件出現(xiàn)的可能性不相等, 所以以顏色為劃分基本事件的依據(jù)的概率模型不是古典概型. [刷好題] 1.袋中有大小、形狀相同的紅、黑球各一個,現(xiàn)依次有放回地隨機(jī)摸取3次,每次摸取一個球. (1)試問:一共有多少種不同的結(jié)果?請列出所有可能的結(jié)果; (2)若摸到紅球時得2分,摸到黑球時得1分,求3次摸球所得總分為5的概率. 解:(1)一共有8種不同的結(jié)果,列舉如下: (紅,紅,紅)、(紅,紅,黑)、(紅,黑,紅)、(紅,黑,黑)、(黑,紅,紅)、(黑,紅,黑)、(黑,黑,紅)、(黑,黑,黑). (2)記“3次摸球所得總分為5”為事件A. 事件A

9、包含的基本事件為:(紅,紅,黑)、(紅,黑,紅)、(黑,紅,紅),事件A包含的基本事件數(shù)為3. 由(1)可知,基本事件總數(shù)為8,所以事件A的概率為P(A)=. 2.下列試驗中,古典概型的個數(shù)為 (  ) ①向上拋一枚質(zhì)地不均勻的硬幣,觀察正面向上的概率; ②向正方形ABCD內(nèi),任意拋擲一點P,點P恰與點C重合; ③從1,2,3,4四個數(shù)中,任取兩個數(shù),求所取兩數(shù)之一是2的概率; ④在線段[0,5]上任取一點,求此點小于2的概率. A.0    B.1    C.2    D.3 解析:選B ①中,硬幣質(zhì)地不均勻,不是等可能事件,所以不是古典概型;②④的基本事件都不是有限個,不

10、是古典概型;③符合古典概型的特點,是古典概型. 簡單的古典概型的概率 [明技法] 求古典概型概率的基本步驟 — ↓ — ↓ — [提能力] 【典例】 (1)(xx·全國卷Ⅱ)從分別寫有1,2,3,4,5的5張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率為(  ) A. B. C. D. 解析:選D 從5張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張的情況如圖: 基本事件總數(shù)為25,第一張卡片上的數(shù)大于第二張卡片上的數(shù)的事件數(shù)為10, ∴所求概率P==.故選D. (2)(xx·全國卷Ⅲ)小敏打開計算機(jī)時,忘

11、記了開機(jī)密碼的前兩位,只記得第一位是M,I,N中的一個字母,第二位是1,2,3,4,5中的一個數(shù)字,則小敏輸入一次密碼能夠成功開機(jī)的概率是(  ) A. B. C. D. 解析:選C 第一位是M,I,N中的一個字母,第二位是1,2,3,4,5中的一個數(shù)字,所以總的基本事件的個數(shù)為15,密碼正確只有一種,概率為,故選C. [刷好題] 如果3個正整數(shù)可作為一個直角三角形三條邊的邊長,則稱這3個數(shù)為一組勾股數(shù),從1,2,3,4,5中任取3個不同的數(shù),則這3個數(shù)構(gòu)成一組勾股數(shù)的概率為(  ) A. B. C. D. 解析:選C 從1,2,3,4,5中任取3個數(shù)有10個基本事件

12、,構(gòu)成勾股數(shù)的只有3,4,5一組,故概率為. 古典概型的交匯問題 [析考情] 古典概型在高考中常與平面向量、集合、函數(shù)、解析幾何、統(tǒng)計等知識交匯命題,命題點新穎,考查知識全面,能力要求較高. [提能力] 命題點1:古典概型與平面向量相結(jié)合 【典例1】 已知向量a=(x,-1),b=(3,y),其中x隨機(jī)選自集合{-1,1,3},y隨機(jī)選自集合{1,3,9}. (1)求a∥b的概率; (2)求a⊥b的概率. 解:由題意,得(x,y)所有的基本事件為(-1,1),(-1,3),(-1,9),(1,1),(1,3),(1,9),(3,1),(3,3),(3,9),共9個. (

13、1)設(shè)“a∥b”為事件A,則xy=-3. 事件A包含的基本事件有(-1,3),共1個. 故a∥b的概率為P(A)=. (2)設(shè)“a⊥b”為事件B,則y=3x. 事件B包含的基本事件有(1,3),(3,9),共2個. 故a⊥b的概率為P(B)=. 命題點2:古典概型與直線、圓相結(jié)合 【典例2】 (xx·洛陽統(tǒng)考)將一顆骰子先后投擲兩次分別得到點數(shù)a,b,則直線ax+by=0與圓(x-2)2+y2=2有公共點的概率為________. 解析:依題意,將一顆骰子先后投擲兩次得到的點數(shù)所形成的數(shù)組(a,b)有(1,1),(1,2),(1,3),…,(6,6),共36種,其中滿足直線ax

14、+by=0與圓(x-2)2+y2=2有公共點,即滿足≤,a2≤b2的數(shù)組(a,b)有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21種,因此所求的概率等于=. 答案: 命題點3:古典概型與函數(shù)相結(jié)合 【典例3】 (xx·成都月考)將一顆骰子拋擲兩次,所得向上點數(shù)分別為m,n,則函數(shù)y=mx3-nx+1在[1,+∞)上為增函數(shù)的概率是(  ) A. B. C. D. 解析:選B ∵y=mx3-nx+1,∴y′=2mx2-n,令y′=0得x=± ,∴x1=,x2=-是函數(shù)的兩個極值點,∴函數(shù)在上是增函數(shù),則 ≤1,即n≤2m. 通過

15、建立關(guān)于m,n的直角坐標(biāo)系可得出滿足n≤2m的點有30個,由古典概型公式可得函數(shù)y=mx3-nx+1在[1,+∞)上為增函數(shù)的概率是P==. 命題點4:古典概型與統(tǒng)計相結(jié)合 【典例4】 某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工.根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:[40,50),[50,60),…,[80,90),[90,100]. (1)求頻率分布直方圖中a的值; (2)估計該企業(yè)的職工對該部門評分不低于80的概率; (3)從評分在[40,60)的受訪職工中,隨機(jī)抽取2人,求此2人的評分都在[40,50

16、)的概率. 解:(1)因為(0.004+a+0.018+0.022×2+0.028)×10=1,所以a=0.006. (2)由所給頻率分布直方圖知,50名受訪職工評分不低于80的頻率為(0.022+0.018)×10=0.4,所以該企業(yè)職工對該部門評分不低于80的概率的估計值為0.4. (3)受訪職工中評分在[50,60)的有:50×0.006×10=3(人),記為A1,A2,A3; 受訪職工中評分在[40,50)的有:50×0.004×10=2(人),記為B1,B2. 從這5名受訪職工中隨機(jī)抽取2人,所有可能的結(jié)果共有10種,它們是{A1,A2},{A1,A3},{A1,B1},{

17、A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2}.又因為所抽取2人的評分都在[40,50)的結(jié)果有1種,即{B1,B2},故所求的概率為. [悟技法] 解決古典概型交匯命題的關(guān)注點 解決與古典概型交匯命題的問題時,把相關(guān)的知識轉(zhuǎn)化為事件,列舉基本事件,求出基本事件和隨機(jī)事件的個數(shù),然后利用古典概型的概率計算公式進(jìn)行計算. [刷好題] 1.將一顆骰子擲兩次,觀察出現(xiàn)的點數(shù),并記第一次出現(xiàn)的點數(shù)為m,第二次出現(xiàn)的點數(shù)為n,向量p=(m,n),q=(3,6).則向量p與q共線的概率為(  ) A.    B.    C.   

18、 D. 解析:選D 由題意可得:基本事件(m,n)(m,n=1,2,…,6)的個數(shù)為6×6=36. 若p∥q,則6m-3n=0,得到n=2m.滿足此條件的共有(1,2),(2,4),(3,6)三個基本事件.因此向量p與q共線的概率為P==. 2.若連續(xù)拋擲兩次質(zhì)地均勻的骰子得到的點數(shù)分別為m,n,則點P(m,n)在直線x+y=4上的概率是(  ) A. B. C. D. 解析:選D 該試驗會出現(xiàn)6×6=36種情況,點(m,n)在直線x+y=4上的情況有(1,3),(2,2),(3,1)共三種,則所求概率P==. 3.設(shè)a∈{1,2,3,4},b∈{2,4,8,12},則函數(shù)f(x)=x3+ax-b在區(qū)間[1,2]上有零點的概率為(  ) A. B. C. D. 解析:選C ∵f(x)=x3+ax-b,∴f′(x)=3x2+a,∵a∈{1,2,3,4},∴f′(x)>0,∴函數(shù)f(x)在區(qū)間[1,2]上為增函數(shù).若存在零點,只需滿足條件則解得a+1≤b≤8+2a.因此可使函數(shù)在區(qū)間[1,2]上有零點的有:a=1,2≤b≤10,故b=2,b=4,b=8;a=2,3≤b≤12,故b=4,b=8,b=12;a=3,4≤b≤14,故b=4,b=8,b=12;a=4,5≤b≤16,故b=8,b=12.根據(jù)古典概型可得有零點的概率為.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!