《(全國(guó)通用版)2022高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題五 解析幾何 規(guī)范答題示例6 直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系學(xué)案 文》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《(全國(guó)通用版)2022高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題五 解析幾何 規(guī)范答題示例6 直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系學(xué)案 文(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、(全國(guó)通用版)2022高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題五 解析幾何 規(guī)范答題示例6 直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系學(xué)案 文
典例6 (12分)在平面直角坐標(biāo)系xOy中,已知橢圓C:+=1(a>b>0)的離心率為,且點(diǎn)在橢圓C上.
(1)求橢圓C的方程;
(2)設(shè)橢圓E:+=1,P為橢圓C上任意一點(diǎn),過(guò)點(diǎn)P的直線(xiàn)y=kx+m交橢圓E于A,B兩點(diǎn),射線(xiàn)PO交橢圓E于點(diǎn)Q.
①求的值;②求△ABQ面積的最大值.
審題路線(xiàn)圖 (1)―→
(2)①―→
②
―→―→
規(guī) 范 解 答·分 步 得 分
構(gòu) 建 答 題 模 板
解 (1)由題意知+=1.又=,
解得a2=4,b2=1.所以橢圓C的
2、方程為+y2=1.2分
(2)由(1)知橢圓E的方程為+=1.
①設(shè)P(x0,y0),=λ,由題意知Q(-λx0,-λy0).
因?yàn)椋珁=1,又+=1,即=1,
所以λ=2,即=2.5分
②設(shè)A(x1,y1),B(x2,y2).將y=kx+m代入橢圓E的方程,
可得(1+4k2)x2+8kmx+4m2-16=0,
由Δ>0,可得m2<4+16k2,(*)
則x1+x2=-,x1x2=.
所以|x1-x2|=.
因?yàn)橹本€(xiàn)y=kx+m與y軸交點(diǎn)的坐標(biāo)為(0,m),
所以△OAB的面積S=|m||x1-x2|=
==2.8分
設(shè)=t,將y=kx+m代入橢圓C的方程,
可得
3、(1+4k2)x2+8kmx+4m2-4=0,
由Δ≥0,可得m2≤1+4k2.(**)
由(*)(**)可知0
4、
第五步
得范圍:通過(guò)求解函數(shù)值域或解不等式得目標(biāo)變量的范圍或最值,要注意變量條件的制約,檢查最值取得的條件.
評(píng)分細(xì)則 (1)第(1)問(wèn)中,求a2-c2=b2關(guān)系式直接得b=1,扣1分;
(2)第(2)問(wèn)中,求時(shí),給出P,Q的坐標(biāo)關(guān)系給1分;無(wú)“Δ>0”和“Δ≥0”者,每處扣1分;聯(lián)立方程消元得出關(guān)于x的一元二次方程給1分;根與系數(shù)的關(guān)系寫(xiě)出后再給1分;求最值時(shí),不指明最值取得的條件扣1分.
跟蹤演練6 (2018·全國(guó)Ⅰ)設(shè)拋物線(xiàn)C:y2=2x,點(diǎn)A(2,0),B(-2,0),過(guò)點(diǎn)A的直線(xiàn)l與C交于M,N兩點(diǎn).
(1)當(dāng)l與x軸垂直時(shí),求直線(xiàn)BM的方程;
(2)證明:∠AB
5、M=∠ABN.
(1)解 當(dāng)l與x軸垂直時(shí),l的方程為x=2,可得點(diǎn)M的坐標(biāo)為(2,2)或(2,-2).
所以直線(xiàn)BM的方程為y=x+1或y=-x-1.
即x-2y+2=0或x+2y+2=0.
(2)證明 當(dāng)l與x軸垂直時(shí),AB為MN的垂直平分線(xiàn),
所以∠ABM=∠ABN.
當(dāng)l與x軸不垂直時(shí),設(shè)l的方程為y=k(x-2)(k≠0),
M(x1,y1),N(x2,y2),則x1>0,x2>0.
由得ky2-2y-4k=0,
顯然方程有兩個(gè)不等實(shí)根.
所以y1+y2=,y1y2=-4.
直線(xiàn)BM,BN的斜率之和kBM+kBN=+=.①
將x1=+2,x2=+2及y1+y2,y1y2的表達(dá)式代入①式分子,
可得x2y1+x1y2+2(y1+y2)===0.
所以kBM+kBN=0,可知BM,BN的傾斜角互補(bǔ),
所以∠ABM=∠ABN.綜上,∠ABM=∠ABN.