影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2022年(新課程)高中數(shù)學(xué)《 3.4 基本不等式 》教案2 新人教A版必修5

上傳人:xt****7 文檔編號:107482482 上傳時間:2022-06-14 格式:DOC 頁數(shù):3 大?。?7KB
收藏 版權(quán)申訴 舉報 下載
2022年(新課程)高中數(shù)學(xué)《 3.4 基本不等式 》教案2 新人教A版必修5_第1頁
第1頁 / 共3頁
2022年(新課程)高中數(shù)學(xué)《 3.4 基本不等式 》教案2 新人教A版必修5_第2頁
第2頁 / 共3頁
2022年(新課程)高中數(shù)學(xué)《 3.4 基本不等式 》教案2 新人教A版必修5_第3頁
第3頁 / 共3頁

最后一頁預(yù)覽完了!喜歡就下載吧,查找使用更方便

9.9 積分

下載資源

資源描述:

《2022年(新課程)高中數(shù)學(xué)《 3.4 基本不等式 》教案2 新人教A版必修5》由會員分享,可在線閱讀,更多相關(guān)《2022年(新課程)高中數(shù)學(xué)《 3.4 基本不等式 》教案2 新人教A版必修5(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年(新課程)高中數(shù)學(xué)《 3.4 基本不等式 》教案2 新人教A版必修5 主備人: 執(zhí)教者: 【學(xué)習(xí)目標(biāo)】 1.知識與技能:進一步掌握基本不等式;會應(yīng)用此不等式求某些函數(shù)的最值;能夠解決一些簡單的實際問題 2.過程與方法:通過兩個例題的研究,進一步掌握基本不等式,并會用此定理求某些函數(shù)的最大、最小值。 3.情態(tài)與價值:引發(fā)學(xué)生學(xué)習(xí)和使用數(shù)學(xué)知識的興趣,發(fā)展創(chuàng)新精神,培養(yǎng)實事求是、理論與實際相結(jié)合的科學(xué)態(tài)度和科學(xué)道德。 【學(xué)習(xí)重點】基本不等式的應(yīng)用 【學(xué)習(xí)難點】利用基本不等式求最大值、最小值。 【授課類型】 新授課 【學(xué)習(xí)方法】 合作探究 【學(xué)習(xí)過程】

2、 1.課題導(dǎo)入 1.重要不等式: 如果 2.基本不等式:如果a,b是正數(shù),那么 3.我們稱的算術(shù)平均數(shù),稱的幾何平均數(shù). 成立的條件是不同的:前者只要求a,b都是實數(shù),而后者要求a,b都是正數(shù)。 2.講授新課 例1(1)用籬笆圍成一個面積為100m的矩形菜園,問這個矩形的長、寬各為多少時,所用籬笆最短。最短的籬笆是多少? (2)段長為36 m的籬笆圍成一個一邊靠墻的矩形菜園,問這個矩形的長、寬各為多少時,菜園的面積最大,最大面積是多少? 解:(1)設(shè)矩形菜園的長為x m,寬為y m,則xy=100,籬笆的長為2(x+y) m。由, 可得 , 。等號當(dāng)且僅當(dāng)x

3、=y時成立,此時x=y=10. 因此,這個矩形的長、寬都為10m時,所用的籬笆最短,最短的籬笆是40m. (2)解法一:設(shè)矩形菜園的寬為x m,則長為(36-2x)m,其中0<x<,其面積S=x(36-2x)=·2x(36-2x)≤ 當(dāng)且僅當(dāng)2x=36-2x,即x=9時菜園面積最大,即菜園長9m,寬為9 m時菜園面積最大為81 m2 解法二:設(shè)矩形菜園的長為x m.,寬為y m ,則2(x+y)=36, x+y=18,矩形菜園的面積為xy m。由 ,可得 當(dāng)且僅當(dāng)x=y,即x=y=9時,等號成立。 因此,這個矩形的長、寬都為9m時,菜園的面積最大,最大面積是81m

4、 歸納:1.兩個正數(shù)的和為定值時,它們的積有最大值,即若a,b∈R+,且a+b=M,M為定值,則ab≤,等號當(dāng)且僅當(dāng)a=b時成立. 2.兩個正數(shù)的積為定值時,它們的和有最小值,即若a,b∈R+,且ab=P,P為定值,則a+b≥2,等號當(dāng)且僅當(dāng)a=b時成立. 例2 某工廠要建造一個長方體無蓋貯水池,其容積為4800m3,深為3m,如果池底每1m2的造價為150元,池壁每1m2的造價為120元,問怎樣設(shè)計水池能使總造價最低,最低總造價是多少元? 分析:此題首先需要由實際問題向數(shù)學(xué)問題轉(zhuǎn)化,即建立函數(shù)關(guān)系式,然后求函數(shù)的最值,其中用到了均值不等式定理。 解:設(shè)水池底面一邊的長度為x

5、m,水池的總造價為l元,根據(jù)題意,得 當(dāng) 因此,當(dāng)水池的底面是邊長為40m的正方形時,水池的總造價最低,最低總造價是297600元 評述:此題既是不等式性質(zhì)在實際中的應(yīng)用,應(yīng)注意數(shù)學(xué)語言的應(yīng)用即函數(shù)解析式的建立,又是不等式性質(zhì)在求最值中的應(yīng)用,應(yīng)注意不等式性質(zhì)的適用條件。 歸納:用均值不等式解決此類問題時,應(yīng)按如下步驟進行: (1)先理解題意,設(shè)變量,設(shè)變量時一般把要求最大值或最小值的變量定為函數(shù); (2)建立相應(yīng)的函數(shù)關(guān)系式,把實際問題抽象為函數(shù)的最大值或最小值問題; (3)在定義域內(nèi),求出函數(shù)的最大值或最小值; (4)正確寫出答案. 3.隨堂練習(xí) 1.已知x≠0,當(dāng)x取什么值時,x2+的值最小?最小值是多少? 2.課本第100頁的練習(xí)1、2、3、4 4.課時小結(jié) 本節(jié)課我們用兩個正數(shù)的算術(shù)平均數(shù)與幾何平均數(shù)的關(guān)系順利解決了函數(shù)的一些最值問題。在用均值不等式求函數(shù)的最值,是值得重視的一種方法,但在具體求解時,應(yīng)注意考查下列三個條件:(1)函數(shù)的解析式中,各項均為正數(shù);(2)函數(shù)的解析式中,含變數(shù)的各項的和或積必須有一個為定值;(3)函數(shù)的解析式中,含變數(shù)的各項均相等,取得最值即用均值不等式求某些函數(shù)的最值時,應(yīng)具備三個條件:一正二定三取等。 5.作業(yè) 同步學(xué)案3.4(2) 個性設(shè)計

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!