2020屆高考數(shù)學(xué) 總復(fù)習(xí)階段性測試題十二 算法初步、推理與證明、復(fù)數(shù) 北師大版
《2020屆高考數(shù)學(xué) 總復(fù)習(xí)階段性測試題十二 算法初步、推理與證明、復(fù)數(shù) 北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020屆高考數(shù)學(xué) 總復(fù)習(xí)階段性測試題十二 算法初步、推理與證明、復(fù)數(shù) 北師大版(13頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、階段性測試題十二(算法初步、推理與證明、復(fù)數(shù)) 本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分. 滿分150分.考試時(shí)間120分鐘. 第Ⅰ卷(選擇題 共50分) 一、選擇題(本大題共10個(gè)小題,每小題5分,共50分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的) 1.(文)(2020·遼寧文)i為虛數(shù)單位,+++=( ) A.0 B.2i C.-2i D.4i [答案] A [解析] 本題考查了復(fù)數(shù)的定義及其運(yùn)算,等比數(shù)列前n項(xiàng)和公式的應(yīng)用,并考查了多種方法靈活處理問題的能力. 法1:∵i2=1,∴i3=-i,i5=i,i7=-i, ∴
2、原式=+++=0. 法2:把原式看成是以為首項(xiàng),以為公比的等比數(shù)列的前4項(xiàng)和即原式==0. (理)(2020·遼寧理)a為正實(shí)數(shù),i為虛數(shù)單位,||=2,則a=( ) A.2 B. C. D.1 [答案] B [解析] 本小題考查內(nèi)容為復(fù)數(shù)的運(yùn)算與復(fù)數(shù)的模的求法. =|1-ai|==2,∴a=. 2.(2020·大綱全國卷理)復(fù)數(shù)z=1+i,為z的共軛復(fù)數(shù),則z-z-1=( ) A.-2i B.-i C.i D.2i [答案] B [解析] 本小題考查的內(nèi)容是復(fù)數(shù)的概念與運(yùn)算. =1-i,∴z·-z-1=(1+i)(1-i)-(1+i)-1=-i.
3、 3.(2020·新課標(biāo)理)執(zhí)行下面的程序框圖,如果輸入的N是6,那么輸出的p是( ) A.120 B.720 C.1440 D.5040 [答案] B [解析] 當(dāng)輸入的N是6時(shí),由于k=1,p=1,因此p=p·k=1.此時(shí)k=1,滿足k<6,故k=k+1=2; 當(dāng)k=2時(shí),p=1×2,此時(shí)滿足k<6,故k=k+1=3; 當(dāng)k=3時(shí),p=1×2×3,此時(shí)滿足k<6,故k=k+1=4; 當(dāng)k=4時(shí),p=1×2×3×4,此時(shí)滿足k<6,故k=k+1=5; 當(dāng)k=5時(shí),p=1×2×3×4×5,此時(shí)滿足k<6,故k=k+1=6. 當(dāng)k=6時(shí),p=1×2×3×4×5×
4、6=720,此時(shí)k<6不再成立,因此輸出p=720. 4.(2020·九江一模)下面的程序框圖給出了計(jì)算數(shù)列{an}的前8項(xiàng)和S的算法,算法執(zhí)行完畢后,輸出的S為( ) A.8 B.63 C.92 D.129 [答案] C [解析] 程序框圖是計(jì)算S=1+2+4+7+11+16+22+29=92,∴輸出的S為92,故選C. 5.(2020·三亞調(diào)研)為確保信息安全,信息需加密傳輸,發(fā)送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規(guī)則為:明文a,b,c,d對應(yīng)密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4對應(yīng)密文5,7,18,16.當(dāng)
5、接收方收到密文14,9,23,28時(shí),則解密得到的明文為( ) A.4,6,1,7 B.7,6,1,4 C.6,4,1,7 D.1,6,4,7 [答案] C [解析] 因加密規(guī)則可得?. 故明文為6,4,1,7. 6.(2020·西寧調(diào)研)觀察下圖中圖形的規(guī)律,在其右下角的空格內(nèi)畫上合適的圖形為( ) [答案] A [解析] 表格中的圖形都是矩形、圓、正三角形的不同排列,規(guī)律是每一行中只有一個(gè)圖形是空心的,其他兩個(gè)都是填充顏色的,第三行中已經(jīng)有正三角形是空心的了,因此另外一個(gè)應(yīng)該是陰影矩形. 7.(文)要表示直線與圓的位置關(guān)系最好用下列哪種框圖來表示( )
6、 A.流程圖 B.程序框圖 C.結(jié)構(gòu)圖 D.統(tǒng)籌圖 [答案] C [解析] 直線與圓有三種位置關(guān)系:直線與圓相交,直線與圓相切,直線與圓相離,它們?nèi)呤遣⒘嘘P(guān)系,都從屬與直線與圓的位置關(guān)系,故宜用結(jié)構(gòu)圖表示. (理)(2020·臨沂一模)如圖所示的程序框圖輸出的結(jié)果是( ) A. B. C. D. [答案] C [解析] i=1≤4滿足,執(zhí)行第一次循環(huán)后,A=,i=2; i=2≤4滿足,執(zhí)行第二次循環(huán)后,A=,i=3; i=3≤4滿足,執(zhí)行第三次循環(huán)后,A=,i=4; i=4≤4滿足,執(zhí)行第四次循環(huán)后,A=,i=5; i=5≤4不滿足,跳出循環(huán),輸
7、出A=. 8.(2020·山東理)復(fù)數(shù)z=(i為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)所在象限為( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 [答案] D [解析] 本題主要考查復(fù)數(shù)的運(yùn)算及復(fù)數(shù)的幾何意義. ∵z====-i. ∴z在復(fù)平面由對應(yīng)的點(diǎn)為 (,-),故選D. 9.(2020·福建理)對于函數(shù)f(x)=asinx+bx+c(其中a,b∈R,c∈Z),選取a,b,c的一組值計(jì)算f(1)和f(-1),所得出的正確結(jié)果一定不可能是( ) A.4和6 B.3和1 C.2和4 D.1和2 [答案] D [解析] ∵f(1)=asin1+
8、b+c,f(-1)=-asin1-b+c,且c是整數(shù),∴f(1)+f(-1)=2c是偶數(shù). 在選項(xiàng)中只有D中兩數(shù)和為奇數(shù),不可能是D. [點(diǎn)評] 本題考查求函數(shù)值和邏輯推理,題目是在以往高考題的基礎(chǔ)上改編的,較新穎,題目難度較大. 10.(文)(2020·鷹潭一模)已知x>0,y>0,lg2x+lg8y=lg2,則+的最小值是( ) A.2 B.2 C.4 D.2 [答案] C [解析] 因?yàn)閤>0,y>0,且lg2x+lg8y=lg2, 所以x+3y=1. 于是,有+=(x+3y)(+)=2+(+)≥4,故選C. (理)(2020·江西上饒一模)用數(shù)學(xué)歸納法證明
9、“n3+(n+1)3+(n+2)3,(n∈N*)能被9整除”,要利用歸納假設(shè)證n=k+1時(shí)的情況,只需展開( ) A.(k+3)3 B.(k+2)3 C.(k+1)3 D.(k+1)3+(k+2)3 [答案] A [解析] 假設(shè)當(dāng)n=k時(shí),原式能被9整除,即k3+(k+1)3+(k+2)3能被9整除. 當(dāng)n=k+1時(shí),(k+1)3+(k+2)3+(k+3)3為了能用上面的歸納假設(shè),只需將(k+3)3展開,讓其出現(xiàn)k3即可. 第Ⅱ卷(非選擇題 共100分) 二、填空題(本大題共5個(gè)小題,每小題5分,共25分,把正確答案填在題中橫線上) 11.在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點(diǎn)的坐
10、標(biāo)為________. [答案] (-1,1) [解析] ==i(1+i)=-1+i. 故對應(yīng)點(diǎn)坐標(biāo)為(-1,1). 12.(文)(2020·福建理)運(yùn)行如圖所示的程序,輸出的結(jié)果是________. [答案] 3 [解析] 本題主要考查算法知識(shí),由于a=1,b=2,a=a+b=1+2=3. (理)(2020·江西理)下圖是某算法的程序框圖,則程序運(yùn)行后輸出的結(jié)果是________. [答案] 10 [解析] 本題主要考查程序框圖知識(shí). n=1,s=0+(-1)1+1=0, n=2時(shí),s=0+(-1)2+2=3,n=3時(shí),s=3+(-1)3+3=5,n=4時(shí),s
11、=5+(-1)4+4=10>9,故運(yùn)行輸出結(jié)果為10. 13.(2020·安徽理)如下圖所示,程序框圖(算法流程圖)的輸出結(jié)果是________. [答案] 15 [解析] 由T=T+k可知T是一個(gè)累加變量,原題實(shí)質(zhì)為求1+2+3+…+k的和,其和為,令≤105,得k≤14, 故當(dāng)k=15時(shí),T=1+2+3+…+15=120>105. 此時(shí)輸出k=15. 14.(2020·咸陽調(diào)研)已知點(diǎn)An(n,an)為函數(shù)y=的圖像上的點(diǎn),Bn(n,bn)為函數(shù)y=x圖像上的點(diǎn),其中n∈N*,設(shè)cn=an-bn,則cn與cn+1的大小關(guān)系為________. [答案] cn>cn+1
12、
[解析] 解法1:∵an=,bn=n,
cn=-n=,隨n的增大而減小,為減函數(shù),∴cn+1
13、006=2020. (理)自然數(shù)按下表的規(guī)律排列 則上起第15行,左起第16列的數(shù)為________. [答案] 240 [解析] 經(jīng)觀察可得這個(gè)自然數(shù)表的排列特點(diǎn): ①第一列的每個(gè)數(shù)都是完全平方數(shù),并且恰好等于它所在行數(shù)的平方,即第n行的第1個(gè)數(shù)為n2; ②第一行第n個(gè)數(shù)為(n-1)2+1; ③第n行從第1個(gè)數(shù)至第n個(gè)數(shù)依次遞減1; ④第n列從第1個(gè)數(shù)至第n個(gè)數(shù)依次遞增1. 則上起第15行,左起第16列的數(shù)應(yīng)為第16列的第15個(gè)數(shù),即為[(16-1)2+1]+14=152+1+14=15×16=240. 三、解答題(本大題共6個(gè)小題,共75分,解答應(yīng)寫出文字說明,證明
14、過程或演算步驟) 16.(本小題滿分12分)(2020·上海理)已知復(fù)數(shù)z1滿足(z1-2)(1+i)=1-i(i為虛數(shù)單位),復(fù)數(shù)z2的虛部為2,且z1·z2是實(shí)數(shù),求z2. [解析] (z1-2)(1+i)=1-i?z1=2-i 設(shè)z2=a+2i,a∈R,則z1z2=(2-i)(a+2i)=(2a+2)+(4-a)i, ∵z1z2∈R,∴a=4,∴z2=4+2i. 17.(本小題滿分12分)(2020·合肥模擬)給出以下10個(gè)數(shù):5,9,80,43,95,73,28,17,60,36,要求把大于40的數(shù)找出來并輸出,試畫出該問題的程序框圖. [分析] 題目給出了10個(gè)數(shù)字,將大
15、于40的數(shù)找出來.解答本題先確定使用循環(huán)結(jié)構(gòu),再確定循環(huán)體. [解析] 程序框圖如圖所示: [點(diǎn)評] 設(shè)計(jì)程序框圖,首先由題意選擇合適的結(jié)構(gòu),再確定本結(jié)構(gòu)需要的條件. 18.(本小題滿分12分)設(shè)復(fù)數(shù)z=lg(m2-2m-2)+(m2+3m+2)i,當(dāng)實(shí)數(shù)m取何值時(shí). (1)z是純虛數(shù). (2)z是實(shí)數(shù). (3)z對應(yīng)的點(diǎn)位于復(fù)平面的第二象限. [解析] (1)由題意知 解得m=3. 所以當(dāng)m=3時(shí),z是純虛數(shù). (2)由m2+3m+2=0, 得m=-1或m=-2, 又m=-1或m=-2時(shí),m2-2m-2>0, 所以當(dāng)m=-1或m=-2時(shí),z是實(shí)數(shù). (3)由
16、
即
解得:-1 17、a≥0,
方程ax2+2x+1=0有實(shí)根,
且,故方程有兩個(gè)負(fù)根,符合題意.
綜上知:當(dāng)a≤1時(shí),方程ax2+2x+1=0至少有一個(gè)負(fù)根.
必要性:若方程ax2+2x+1=0至少有一個(gè)負(fù)根.
當(dāng)a=0時(shí),方程為2x+1=0符合題意.
當(dāng)a≠0時(shí),方程ax2+2x+1=0應(yīng)有一正一負(fù)或兩個(gè)負(fù)根.
則<0或.解得a<0或0
18、
20.(本小題滿分13分)(1)設(shè)x是正實(shí)數(shù),求證:
(x+1)(x2+1)(x3+1)≥8x3;
(2)若x∈R,不等式(x+1)(x2+1)(x3+1)≥8x3是否仍然成立?如果成立,請給出證明;如果不成立,請舉出一個(gè)使它不成立的x的值.
[解析] (1)x是正實(shí)數(shù),由基本不等式知
x+1≥2,x2+1≥2x,x3+1≥2,
故(x+1)(x2+1)(x3+1)≥2·2x·2=8x3(當(dāng)且僅當(dāng)x=1時(shí)等號(hào)成立).
(2)若x∈R,不等式(x+1)(x2+1)(x3+1)≥8x3仍然成立.
由(1)知,當(dāng)x>0時(shí),不等式成立;
當(dāng)x≤0時(shí),8x3≤0,
而(x+1)( 19、x2+1)(x3+1)
=(x+1)2(x2+1)(x2-x+1)
=(x+1)2(x2+1)[(x-)2+]≥0.
此時(shí)不等式仍然成立.
21.(本小題滿分14分)(2020·貴陽一模)已知數(shù)列{an}中,Sn是它的前n項(xiàng)和,并且Sn+1=4an+2(n=1,2,…),a1=1.
(1)設(shè)bn=an+1-2an(n=1,2,…),求證:數(shù)列{bn}是等比數(shù)列;
(2)設(shè)cn=(n=1,2,…),求證:數(shù)列{cn}是等差數(shù)列;
(3)(理)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和公式.
[解析] (1)證明:∵Sn+1=4an+2,∴Sn+2=4an+1+2,
兩式相減,得Sn+2 20、-Sn+1=4an+1-4an(n=1,2,…),
即an+2=4an+1-4an,
變形得an+2-2an+1=2(an+1-2an).
∵bn=an+1-2an(n=1,2,…),∴bn+1=2bn.
由此可知,數(shù)列{bn}是公比為2的等比數(shù)列.
(2)證明:由S2=a1+a2=4a1+2,a1=1,
∴a2=5,∴b1=a2-2a1=3,
由(1)知bn=3·2n-1,又cn=.
∴cn+1-cn=-==.
將bn=3·2n-1代入得cn+1-cn=(n=1,2,…).
由此可知,數(shù)列{cn}是公差d=的等差數(shù)列.
(3)解:由(2)得:c1==,故cn=n-.
∵cn=n-=(3n-1),
∴an=2n·cn=(3n-1)·2n-2(n=1,2,…).
當(dāng)n≥2時(shí),Sn=4an-1+2=(3n-4)·2n-1+2.
由于S1=a1=1也適合于此公式,
所以{an}的前n項(xiàng)和公式為Sn=(3n-4)·2n-1+2.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電氣自動(dòng)化答辯課件
- 生態(tài)系統(tǒng)及其穩(wěn)定性一輪復(fù)習(xí)課件
- 職業(yè)病防制專題知識(shí)講座
- 物體的浮與沉3(比較浮力的大小)課件
- 燭之武退秦師知識(shí)點(diǎn)檢查復(fù)習(xí)復(fù)習(xí)課程課件
- 人教部編版三年級上冊不懂就要問1課件
- 胰島素過敏專題知識(shí)專家講座
- 各種各樣的葉子
- 混凝土澆筑技術(shù)交底(課堂)課件
- 極簡白色主題演講模板課件
- 人教部編版《大雁歸來》課件3
- 高校校園網(wǎng)絡(luò)整體解決方案
- 少尿與無尿?qū)n}知識(shí)講座
- 人教精通版英語五上《Is-this-your-schoolbag》(Lesson-27)教學(xué)課件
- 泌尿系統(tǒng)結(jié)核-課件