《2020高考數(shù)學(xué)精英備考專題講座 第二講三角函數(shù)與平面向量 第三節(jié)平面向量與代數(shù)的綜合應(yīng)用 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020高考數(shù)學(xué)精英備考專題講座 第二講三角函數(shù)與平面向量 第三節(jié)平面向量與代數(shù)的綜合應(yīng)用 文(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第三節(jié) 平面向量與代數(shù)的綜合應(yīng)用
平面向量與代數(shù)的綜合應(yīng)用為每年高考必考內(nèi)容,以選擇題(填空題)形式出現(xiàn),或作為題設(shè)條件與三角函數(shù)(解三角形)、數(shù)列、函數(shù)不等式形成綜合解答題的形式出現(xiàn),分值在4~12分左右;向量具有代數(shù)形式與幾何形式的“雙重身份”,這使它成為中學(xué)數(shù)學(xué)知識(shí)的一個(gè)交匯點(diǎn),也成為多項(xiàng)內(nèi)容的媒介,在高考中主要考查有關(guān)的基礎(chǔ)知識(shí),突出向量的工具作用,難度系數(shù)在0.4~0.8之間.
考試要求 ⑴理解平面向量的概念,理解兩個(gè)向量相等及向量共線的含義;⑵掌握向量的加法、減法及數(shù)乘運(yùn)算;⑶了解平面向量基本定理及其意義,掌握平面向量的正交分解及其坐標(biāo)表示,理解用坐標(biāo)表示向量的
2、加法和減法運(yùn)算及數(shù)乘運(yùn)算,理解用坐標(biāo)表示的平面向量共線的條件;⑷理解平面向量的數(shù)量積的含義及其物理意義,掌握數(shù)量積的坐標(biāo)表達(dá)式并會(huì)進(jìn)行數(shù)量積的運(yùn)算,能用數(shù)量積表示兩向量的夾角,會(huì)用數(shù)量積判斷兩向量的垂直關(guān)系.
題型一 平面向量的有關(guān)概念及應(yīng)用
例1定義平面向量之間的一種運(yùn)算“”如下,對(duì)任意的,,令,下面說(shuō)法錯(cuò)誤的是( )
(A)若與共線,則 (B)
(C)對(duì)任意的,有 (D)
點(diǎn)撥:仿照平面向量的線性運(yùn)算規(guī)則及數(shù)量積的性質(zhì)進(jìn)行“”運(yùn)算.
解:若與共線,則有,故A正確;因?yàn)椋?
而,所以有,故選項(xiàng)B錯(cuò)誤,選B.
易錯(cuò)點(diǎn):
3、把定義的運(yùn)算“”混同與“”,認(rèn)同選項(xiàng)B正確.
變式與引申1:已知兩個(gè)非零向量,定義運(yùn)算“#”:,其中為的夾角.有兩兩不共線的三個(gè)向量,下列結(jié)論:①若,則;②;③若;則;④;⑤.其中正確的個(gè)數(shù)有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
題型二 平面向量與三角函數(shù)的綜合應(yīng)用
例2:已知向量,.
(1)當(dāng)時(shí),求的值;(2)求的最小正周期和單調(diào)遞增區(qū)間.
點(diǎn)撥:(1)由向量平行列方程解出的值,所求式子轉(zhuǎn)化成正切單角名稱的三角代數(shù)式,代入可求解;(2)進(jìn)行向量坐標(biāo)形式的數(shù)量積運(yùn)算得到的解析式,轉(zhuǎn)化為函數(shù)結(jié)構(gòu).
解:(1)由 得,即,
所以.
(2) 因?yàn)?,;所?/p>
4、;
;所以最小正周期為;由
得,故單調(diào)遞增區(qū)間為
().
易錯(cuò)點(diǎn):計(jì)算的值出錯(cuò);轉(zhuǎn)化為形式出錯(cuò);下結(jié)論時(shí)遺漏.
變式與引申2:已知向量,,
(1)若,求. (2)求的最大值.
題型三 平面向量與數(shù)列的綜合應(yīng)用
解:(1)因?yàn)辄c(diǎn)都在斜率為6的同一條直線上,所以,即于是數(shù)列是等差數(shù)列,故;因?yàn)?,;又因?yàn)楣簿€,所以 即,當(dāng)n≥2時(shí), ,當(dāng)n=1時(shí),上式也成立, 所以. 高
(2), .
易錯(cuò)點(diǎn):錯(cuò)誤理解點(diǎn)都在斜率為6的同一條直線上的含義,無(wú)法求得的通項(xiàng)公式;由與共線錯(cuò)列方程得到結(jié)果.
變式與引申3:數(shù)列中,,,數(shù)列中,,,在直角坐標(biāo)平面內(nèi),已知點(diǎn)列,則向量++…
5、+的坐標(biāo)為( ).
A. B. C. D.
題型四 平面向量與函數(shù)的綜合應(yīng)用
解:(1)方法一:由題意知(,), ,又高故=×()+×()=0,整理得:,即 . 中學(xué)
方法二:因?yàn)?,-1),(, ),所以=2,=1且,又故=0.
即,化簡(jiǎn)得, 所以.
(2) 由(1)知:,求導(dǎo),令<0得-1<<1;令>0得
<-1或>1. 故的單調(diào)遞減區(qū)間是(-1, 1 ),單調(diào)遞增區(qū)間是(-∞,-1)和(1,+∞).
易錯(cuò)點(diǎn):字母運(yùn)算出錯(cuò)不能正確得到的坐標(biāo)形式;沒(méi)能通過(guò)簡(jiǎn)單的心算判斷出,使得的展開(kāi)式中無(wú)法消去含有的項(xiàng).
變式與引申4:1.已知平面向量=(,-1),
6、=(,),若存在不為零的實(shí)數(shù)k和角α,使向量=+(),=+,且⊥,試求實(shí)數(shù) 的取值范圍;
2.(2020山東德州模擬)已知兩個(gè)向量, .
(1)若且,求實(shí)數(shù)x的值; (2)對(duì)寫(xiě)出函數(shù)具備的性質(zhì).
本節(jié)主要考查(1)知識(shí)點(diǎn)有平面向量的有關(guān)概念、加減法的幾何意義、向量共線定理、平面向量的基本定理、坐標(biāo)表示、垂直關(guān)系、向量的數(shù)量積;(2)演繹推理能力、運(yùn)算能力、創(chuàng)新意識(shí);(3)函數(shù)與方程的思想、數(shù)形結(jié)合思想和待定系數(shù)法.
點(diǎn)評(píng)(1)掌握平面向量的基礎(chǔ)知識(shí),正確地進(jìn)行向量的各種運(yùn)算來(lái)處理向量與代數(shù)的綜合應(yīng)用問(wèn)題(如例1),要善于利用向量“數(shù)”與“形”兩方面的特征;(2)向量共線的充要條件中
7、應(yīng)注意只有非零向量才能表示與之共線的其他向量,向量共線的坐標(biāo)表示不能與向量垂直的坐標(biāo)表示相混淆;(3)理解向量的數(shù)量積的定義、運(yùn)算律、性質(zhì)并能靈活應(yīng)用,向量的數(shù)量積的結(jié)果是實(shí)數(shù)而不是向量,注意數(shù)量積與實(shí)數(shù)乘法運(yùn)算律的差異;(4)向量的坐標(biāo)運(yùn)算使得向量運(yùn)算完全代數(shù)化,向量與函數(shù)、數(shù)列、解三角形、不等式等相結(jié)合形成了代數(shù)的綜合問(wèn)題(如例2、例3、例4),在知識(shí)的交匯點(diǎn)處命題來(lái)考查了向量的工具性及學(xué)生分析問(wèn)題、解決問(wèn)題的能力.
習(xí)題2—3
1. (2020年湖南理數(shù))在邊長(zhǎng)為1的正三角形中,設(shè),則.
2. 關(guān)于平面向量有下列四個(gè)命題:①若,則; ②已知.若,則;③非零向量和,滿足,則與
8、的夾角為;④.其中正確的命題為_(kāi)__________.(寫(xiě)出所有正確命題的序號(hào))
3.已知向量 (m是常數(shù)),
(1)若是奇函數(shù),求m的值; 中學(xué)
(2)若向量的夾角為中的值,求實(shí)數(shù)的取值范圍.
4.在平面直角坐標(biāo)系xOy中,點(diǎn)A(-1,-2)、B(2,3)、C(-2,-1)。
(1) 求以線段AB、AC為鄰邊的平行四邊形兩條對(duì)角線的長(zhǎng);
(2) 設(shè)實(shí)數(shù)t滿足()·=0,求t的值.
5.(2020鄭州四中模擬)已知點(diǎn)集,其中,點(diǎn)列在中,為與軸的公共點(diǎn),等差數(shù)列的公差為1;
(1)求數(shù)列,的通項(xiàng)公式;(2)若,數(shù)列的前項(xiàng)和k*s*5*u滿足對(duì)任意的都成立,試求的取值范圍.
9、【答案】
變式與引申1:解:② ;因?yàn)棰贂r(shí),所以不一定有,知①錯(cuò);②,,知,,,故②正確;③非零向量,滿足,則三向量、、構(gòu)成正三角形,由向量加法的平行四邊形法則知,平分,與的夾角為30°,③錯(cuò).
變式與引申2:解:(1)若,則,由此得,因?yàn)椋?;(2)由,得;,當(dāng)=1時(shí),取得最大值為+1,此時(shí).
變式與引申3:解:選D. 依題意得成等差數(shù)列,由得;成等比數(shù)列,由;,,…,.因?yàn)椋?;?+…+=.
變式與引申4:⑴仿解法二知,而, 所以當(dāng)時(shí),取最大值1;當(dāng)時(shí),取最小值-.又≠0 故的取值范圍為 .將例題中的略加改動(dòng),舊題新掘,出現(xiàn)了意想不到的效果,很好地考查了向量與三角函數(shù)綜合運(yùn)
10、用能力.
⑵解:①由已知得, 或解得,或
②具備的性質(zhì): (ⅰ)偶函數(shù);
(ⅱ)當(dāng)即時(shí),取得最小值(寫(xiě)出值域?yàn)橐部桑?
(ⅲ)單調(diào)性:在上遞減,上遞增;由對(duì)稱性,在上遞增,在遞減 .
習(xí)題2—3
③中易知夾角,與的夾角為;
④中.
3.解: (1)由題知=,所以=,由題知對(duì)任意的不為零的實(shí)數(shù), 都有,即=恒成立,所以.
(2)由題知0,所以0,即,①當(dāng)時(shí),;②當(dāng)時(shí),;所以或;③當(dāng)時(shí),,所以.
綜上, 當(dāng)時(shí),實(shí)數(shù)的取值范圍是;當(dāng)時(shí), 實(shí)數(shù)的取值范圍是或;當(dāng)時(shí), 實(shí)數(shù)的取值范圍是.
4.
解:(1)方法一:由題設(shè)知,則
所以
故所求的兩條對(duì)角線的長(zhǎng)分別為、。
方法二:設(shè)該平行四邊形的第四個(gè)頂點(diǎn)為D,兩條對(duì)角線的交點(diǎn)為E,則:
E為B、C的中點(diǎn),E(0,1)
又E(0,1)為A、D的中點(diǎn),所以D(1,4)
故所求的兩條對(duì)角線的長(zhǎng)分別為BC=、AD=;
(2)由題設(shè)知:=(-2,-1),。
由()·=0,得:,從而所以.
或者: ,.
轉(zhuǎn)化為不等式
,欲使對(duì)任意的都成立,只須成立即可,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以取值范圍為.