廣東省2020年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題三 三角函數(shù)及解三角形第2講 三角恒等變換及解三角形 理
《廣東省2020年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題三 三角函數(shù)及解三角形第2講 三角恒等變換及解三角形 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《廣東省2020年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題三 三角函數(shù)及解三角形第2講 三角恒等變換及解三角形 理(10頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、專題三 三角函數(shù)及解三角形第2講 三角恒等變換及解三角形 真題試做 1.(2020·重慶高考,理5)設(shè)tan α,tan β是方程x2-3x+2=0的兩根,則tan(α+β)的值為( ). A.-3 B.-1 C.1 D.3 2.(2020·山東高考,理7)若θ∈,sin 2θ=,則sin θ=( ). A. B. C. D. 3.(2020·天津高考,理6)在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c.已知8b=5c,C=2B,則cos C=( ). A. B.- C.± D. 4.(2020·
2、湖北高考,理11)設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.若(a+b-c)(a+b+c)=ab,則角C=________. 5.(2020·廣東高考,理16)已知函數(shù)f(x)=2cos(其中ω>0,x∈R)的最小正周期為10π. (1)求ω的值; (2)設(shè)α,β∈,f=-,f=,求cos(α+β) 的值. 考向分析 本部分主要考查三角函數(shù)的基本公式,三角恒等變形及解三角形等基本知識(shí).近幾年高考題目中每年有1~2個(gè)小題,一個(gè)大題,解答題以中低檔題為主,很多情況下與平面向量綜合考查,有時(shí)也與不等式、函數(shù)最值結(jié)合在一起,但難度不大,而三角函數(shù)與解三角形相結(jié)合,更是考向的主要趨勢(shì)
3、.三角恒等變換是高考的熱點(diǎn)內(nèi)容,主要考查利用各種三角函數(shù)進(jìn)行求值與化簡,其中降冪公式、輔助角公式是考查的重點(diǎn),切化弦、角的變換是??嫉娜亲儞Q思想.正弦定理、余弦定理以及解三角形問題是高考的必考內(nèi)容,主要考查:①邊和角的計(jì)算;②三角形形狀的判斷;③面積的計(jì)算;④有關(guān)的范圍問題.由于此內(nèi)容應(yīng)用性較強(qiáng),與實(shí)際問題結(jié)合起來命題將是今后高考的一個(gè)關(guān)注點(diǎn),不可小視. 熱點(diǎn)例析 熱點(diǎn)一 三角恒等變換及求值 【例1】已知函數(shù)f(x)=2cos2-sin x. (1)求函數(shù)f(x)的最小正周期和值域; (2)若α為第二象限角,且f=,求的值. 規(guī)律方法 明確“待求和已知三角函數(shù)間的差異”是
4、解決三角函數(shù)化簡、求值、證明問題的關(guān)鍵.三角恒等變換的常用策略有: (1)常值代換:特別是“1”的代換,1=sin2θ+cos2θ=tan 45°等. (2)項(xiàng)的分拆與角的配湊: ①二倍角只是個(gè)相對(duì)概念,如是的二倍角,α+β是的二倍角等; ②=-,α=(α-β)+β等; ③熟悉公式的特點(diǎn),正用或逆用都要靈活,特別對(duì)以下幾種變形更要牢記并會(huì)靈活運(yùn)用: 1±sin 2α=sin2α+cos2α±2sin αcos α=(sin α±cos α)2,cos α=等. (3)降冪與升冪:正用二倍角公式升冪,逆用二倍角公式降冪. (4)角的合成及三角函數(shù)名的統(tǒng)一:asin α+bcos
5、α=sin(α+φ). 變式訓(xùn)練1 已知函數(shù)f(x)=sin ωx-cos ωx(x∈R,ω>0)的最小正周期為6π. (1)求f的值; (2)設(shè)α,β∈,f=-,f(3β+2π)=,求cos(α+β)的值. 熱點(diǎn)二 三角函數(shù)、三角形與向量等知識(shí)的交會(huì) 【例2】在銳角三角形ABC中,a,b,c分別是角A,B,C的對(duì)邊,m=(2b-c,cos C),n=(a,cos A),且m∥n. (1)求角A的大小; (2)求函數(shù)y=2sin2B+cos的值域. 規(guī)律方法 以解三角形為命題形式考查三角函數(shù)是“眾望所歸”:正余弦定理的應(yīng)用,難度適中,運(yùn)算量適度,方向明確(化角或化邊).(1)利
6、用正弦定理將角化為邊時(shí),實(shí)際上是把角的正弦替換為所對(duì)邊與外接圓直徑的比值.(2)求角的大小一定要有兩個(gè)條件:①是角的范圍;②是角的某一三角函數(shù)值.用三角函數(shù)值判斷角的大小時(shí),一定要注意角的范圍及三角函數(shù)的單調(diào)性的應(yīng)用.(3)三角形的內(nèi)角和為π,這是三角形中三角函數(shù)問題的特殊性.在三角形中,任意兩角和與第三個(gè)角總互補(bǔ),任意兩半角和與第三個(gè)角的半角總互余.銳角三角形三內(nèi)角都是銳角三內(nèi)角的余弦值均為正值任意兩角的和都是鈍角任意兩邊的平方和大于第三邊的平方. 變式訓(xùn)練2 (2020·廣東肇慶一模,理18)已知△ABC的面積為2,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知a=3,b=4,0°<C<90
7、°. (1)求sin(A+B)的值; (2)求cos的值; (3)求向量,的數(shù)量積·. 熱點(diǎn)三 正、余弦定理的實(shí)際應(yīng)用 【例3】某城市有一條公路,自西向東經(jīng)過A點(diǎn)到市中心O點(diǎn)后轉(zhuǎn)向東北方向OB.現(xiàn)要修建一條鐵路L,L在OA上設(shè)一站A,在OB上設(shè)一站B,鐵路在AB部分為直線段.現(xiàn)要求市中心O與AB的距離為10 km,問把A,B分別設(shè)在公路上離市中心O多遠(yuǎn)處才能使A,B之間的距離最短?并求最短距離.(結(jié)果保留根號(hào)) 規(guī)律方法 (1)三角形應(yīng)用題主要是解決三類問題:測高度、測距離和測角度. (2)在解三角形時(shí),要根據(jù)具體的已知條件合理選擇解法,同時(shí),不可將正弦定理與余弦定理割裂開來
8、,有時(shí)需綜合運(yùn)用. (3)在解決與三角形有關(guān)的實(shí)際問題時(shí),首先要明確題意,正確畫出平面圖形或空間圖形,然后根據(jù)條件和圖形特點(diǎn)將問題歸納到三角形中解決.要明確先用哪個(gè)公式或定理,先求哪些量,確定解三角形的方法.在演算過程中,要算法簡練、算式工整、計(jì)算正確,還要注意近似計(jì)算的要求. (4)在畫圖和識(shí)圖過程中要準(zhǔn)確理解題目中所涉及的幾種角,如仰角、俯角、方位角,以防出錯(cuò). (5)有些時(shí)候也必須注意到三角形的特殊性,如直角三角形、等腰三角形、銳角三角形等. 變式訓(xùn)練3 如圖,一船在海上自西向東航行,在A處測得某島M的方位角為北偏東α,前進(jìn)m km后在B處測得該島的方位角為北偏東β,已知該島周圍
9、n km范圍內(nèi)(包括邊界)有暗礁,現(xiàn)該船繼續(xù)東行.當(dāng)α與β滿足條件__________時(shí),該船沒有觸礁危險(xiǎn). 思想滲透 化歸轉(zhuǎn)化思想——解答三角恒等變換問題 求解恒等變換問題的思路: 一角二名三結(jié)構(gòu),即用化歸轉(zhuǎn)化的思想“去異求同”的過程,具體分析如下: (1)變角:首先觀察角與角之間的關(guān)系,注意角的一些常用變換形式,角的變換是三角函數(shù)變換的核心; (2)變名:其次看函數(shù)名稱之間的關(guān)系,通?!扒谢摇保T導(dǎo)公式的運(yùn)用; (3)結(jié)構(gòu):再次觀察代數(shù)式的結(jié)構(gòu)特點(diǎn),降冪與升冪,巧用“1”的代換等. 【典型例題】(2020·福建高考,文20)某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的
10、值都等于同一個(gè)常數(shù): ①sin213°+cos217°-sin 13°cos 17°; ②sin215°+cos215°-sin 15°cos 15°; ③sin218°+cos212°-sin 18°cos 12°; ④sin2(-18°)+cos248°-sin(-18°)cos 48°; ⑤sin2(-25°)+cos255°-sin(-25°)cos 55°. (1)試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù); (2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論. 解法一:(1)選擇②式,計(jì)算如下: sin215°+cos215°-sin 15°
11、cos 15°=1-sin 30°=1-=. (2)三角恒等式為sin2α+cos2(30°-α)-sin αcos(30°-α)=. 證明如下: sin2α+cos2(30°-α)-sin αcos(30°-α) =sin2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α) =sin2α+cos2α+sin αcos α+sin2α-sin αcos α-sin2α=sin2α+cos2α=. 解法二:(1)同解法一. (2)三角恒等式為sin2α+cos2(30°-α)-sin αcos(30°-α)
12、=. 證明如下: sin2α+cos2(30°-α)-sin αcos(30°-α) =+-sin α(cos 30°cos α+sin 30°sin α) =-cos 2α++(cos 60°cos 2α+sin 60°sin 2α)-sin αcos α-sin2α =-cos 2α++cos 2α+sin 2α-sin 2α-(1-cos 2α) =1-cos 2α-+cos 2α=. 1.已知cos x-sin x=-,則sin=( ). A. B.- C. D.- 2.在△ABC中,如果0<tan Atan B<1,那么△ABC是(
13、). A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不能確定 3.(2020·山東煙臺(tái)適用性測試一,5)已知傾斜角為α的直線l與直線x-2y+2=0平行,則tan 2α的值為( ). A. B. C. D. 4.(2020·江西南昌二模,5)已知cos=-,則cos x+cos的值是( ). A.- B.± C.-1 D.±1 5.(2020·山東淄博一模,10)在△ABC中,已知bcos C+ccos B=3acos B,其中a,b,c分別為角A,B,C的對(duì)邊,則cos B的值為( ). A.
14、 B.- C. D.- 6.已知sin x=,則sin 2=______. 7.(2020·湖南長沙模擬,18)已知函數(shù)f(x)=3sin2x+2sin xcos x+5cos2x. (1)若f(α)=5,求tan α的值; (2)設(shè)△ABC三內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且=,求f(x)在(0,B]上的值域. 8.(2020·廣東廣州二模,16)已知函數(shù)f(x)=Asin(A>0,ω>0)在某一個(gè)周期內(nèi)的圖象的最高點(diǎn)和最低點(diǎn)的坐標(biāo)分別為,. (1)求A和ω的值; (2)已知α∈,且sin α=,求f(α)的值. 參考答案 命題調(diào)研·明晰考向
15、真題試做 1.A 解析:因?yàn)閠an α,tan β是方程x2-3x+2=0的兩根, 所以tan α+tan β=3,tan α·tan β=2,而tan(α+β)===-3,故選A. 2.D 解析:由θ∈,得2θ∈. 又sin 2θ=,故cos 2θ=-. 故sin θ==. 3.A 解析:在△ABC中,由正弦定理:=, ∴=, ∴=,∴cos B=. ∴cos C=cos 2B=2cos2B-1=. 4. 解析:∵由(a+b-c)(a+b+c)=ab,整理可得,a2+b2-c2=-ab,∴cos C===-,∴C=. 5.解:(1)因?yàn)楹瘮?shù)f(x)的最小正周期為=10π
16、,解得ω=. (2)由(1),可知f(x)=2cos, ∵-=f =2cos =2cos=-2sin α, ∴sin α=,cos α=. ∵=f =2cos=2cos β, ∴cos β=,sin β=. ∴cos(α+β)=cos αcos β-sin αsin β =×-×=-. 精要例析·聚焦熱點(diǎn) 熱點(diǎn)例析 【例1】 解:(1)∵f(x)=1+cos x-sin x =1+2cos, ∴函數(shù)f(x)的最小正周期為2π. 又∵-1≤cos≤1, ∴函數(shù)f(x)的值域?yàn)閇-1,3]. (2)∵f=, ∴1+2cos α=,即cos α=-. ∵=
17、= =, 又∵α為第二象限角,且cos α=-, ∴sin α=. ∴原式===. 【變式訓(xùn)練1】 解:(1)f(x)=sin ωx-cos ωx =2 =2sin. ∵函數(shù)f(x)的最小正周期為6π, ∴T==6π,即ω=. ∴f(x)=2sin. ∴f=2sin=2sin=. (2)f =2sin =2sin α=-, ∴sin α=-. f(3β+2π)=2sin =2sin=2cos β=, ∴cos β=. ∵α,β∈, ∴cos α==, sin β=-=-. ∴cos(α+β)=cos αcos β-sin αsin β=×-×=.
18、【例2】 解:(1)由m∥n,得(2b-c)cos A-acos C=0, ∴(2sin B-sin C)cos A-sin Acos C=0, 2sin Bcos A=sin Ccos A+sin Acos C =sin(A+C)=sin(π-B)=sin B, 在銳角三角形ABC中,sin B>0, ∴cos A=,故A=. (2)在銳角三角形ABC中,A=, 故<B<. ∴y=2sin2B+cos=1-cos 2B+cos 2B+sin 2B =1+sin 2B-cos 2B =1+sin. ∵<B<,∴<2B-<. ∴<sin≤1,<y≤2. ∴函數(shù)y=2si
19、n2B+cos的值域?yàn)? 【變式訓(xùn)練2】 解:(1)由absin C=2, 即×3×4sin C=2,得sin C=. ∵A+B=180°-C, ∴sin(A+B)=sin(180°-C)=sin C=. (2)由(1),得sin C=. ∵0°<C<90°, ∴cos C===. ∴cos 2C=2cos2C-1=2×2-1=. ∴sin 2C=2sin Ccos C=2××=. ∴cos =cos 2Ccos-sin 2Csin =×-×=-. (3)∵||=a=3,||=b=4, 設(shè)向量與所成的角為θ, 則θ=180°-C. ∴·=||·||cos θ
20、=abcos(180°-C)=-abcos C =-3×4×=-4. 【例3】解:在△AOB中,設(shè)OA=a,OB=b. 因?yàn)镺A為正西方向,OB為東北方向, 所以∠AOB=135°. 又O到AB的距離為10, 所以S△ABO=absin 135°=|AB|·10,得|AB|=ab. 設(shè)∠OAB=α,則∠OBA=45°-α. 因?yàn)閍=,b=, 所以ab=· = = = =≥. 當(dāng)且僅當(dāng)α=22°30′時(shí),“=”成立. 所以|AB|≥×=20(+1). 當(dāng)且僅當(dāng)α=22°30′時(shí),“=”成立. 所以,當(dāng)a=b==10時(shí), A,B之間的距離最短,且最短距離為20(
21、+1) km. 即當(dāng)A,B分別在OA,OB上離市中心O 10 km處時(shí),能使A,B之間的距離最短,最短距離為20(+1) km. 【變式訓(xùn)練3】 mcos αcos β>nsin(α-β) 解析:∠MAB=90°-α,∠MBC=90°-β=∠MAB+∠AMB=90°-α+∠AMB, 所以∠AMB=α-β. 由題可知,在△ABM中,根據(jù)正弦定理得=,解得BM=.要使船沒有觸礁危險(xiǎn),需要BMsin(90°-β)=>n,所以α與β滿足mcos αcos β>nsin(α-β)時(shí),該船沒有觸礁危險(xiǎn). 創(chuàng)新模擬·預(yù)測演練 1.B 解析:由cos x-sin x=2 =2 =2sin,
22、 可得sin=-. 2.C 解析:由題意0<A<π,0<B<π,tan Atan B>0,則A,B兩角為銳角, 又tan(A+B)=>0,則A+B為銳角,則角C為鈍角,故選C. 3.B 解析:已知傾斜角為α的直線l與直線x-2y+2=0平行, 則tan α=,tan 2α===. 4.C 解析:cos x+cos=cos x+cos xcos+sin xsin =cos x+sin x=cos=×=-1. 5.A 解析:因?yàn)閎cos C+ccos B=3acos B, 所以sin Bcos C+cos Bsin C=3sin Acos B, 即sin(B+C)=3sin Ac
23、os B,即cos B=. 6.2- 解析:sin 2 =sin=-cos 2x =-(1-2sin2x)=2sin2x-1 =2×2-1=3--1=2-. 7.解:(1)由f(α)=5,得3sin2α+2sin αcos α+5cos2α=5, ∴3·+sin 2α+5·=5. ∴sin 2α+cos 2α=1,即sin 2α=1-cos 2α2sin αcos α=2sin2α,∴sin α=0或tan α=. ∴tan α=0或tan α=. (2)由=,得=, 則cos B=,即B=. 又f(x)=3sin2x+2sin xcos x+5cos2x=sin 2x+cos 2x+4=2sin+4, 由0<x≤,可得≤sin≤1, 故5≤f(x)≤6,即所求值域是[5,6]. 8.解:(1)∵函數(shù)f(x)的圖象的最高點(diǎn)坐標(biāo)為, ∴A=2. 依題意,得函數(shù)f(x)的周期 T=2=π, ∴ω==2. (2)由(1)得f(x)=2sin. ∵α∈,且sin α=, ∴cos α==. ∴sin 2α=2sin αcos α=, cos 2α=1-2sin2α=-. ∴f(α)=2sin =2 =.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2020高考化學(xué)熱門專題:原理綜合透題型析課件
- 現(xiàn)代中國的教育說課稿課件
- 蒸餾和熔點(diǎn)沸點(diǎn)的測定和溫度計(jì)的校正
- 臨時(shí)起搏器的護(hù)理
- 恒成實(shí)業(yè)網(wǎng)絡(luò)推廣方案
- 勿為小惡優(yōu)秀課件-粵教版
- 人教版初中地理七年級(jí)上冊(cè)人口與人種課件7
- 誡子書課件文檔
- 軟件測試計(jì)劃書與測試用例編寫課件
- 人教版五年級(jí)數(shù)學(xué)上冊(cè)課件3小數(shù)除法第2課時(shí)除數(shù)是整數(shù)的小數(shù)除法課件
- 太白酒2002年全國推廣營銷企劃案
- 滬教版小學(xué)語文三年級(jí)上冊(cè)《小狗杜克》課件1
- 我們的情感世界課件7-人教版
- 擔(dān)保產(chǎn)品案例講解及其風(fēng)險(xiǎn)控制設(shè)計(jì)(含法律相關(guān)規(guī)范)
- 【部編版】四年級(jí)語文上冊(cè)《2.走月亮》ppt課件