2022年高考數(shù)學(xué)一輪復(fù)習(xí) 單元質(zhì)檢(
2022年高考數(shù)學(xué)一輪復(fù)習(xí) 單元質(zhì)檢(,2022年高考數(shù)學(xué)一輪復(fù)習(xí),單元質(zhì)檢(,2022,年高,數(shù)學(xué),一輪,復(fù)習(xí),單元,質(zhì)檢
單元質(zhì)檢十 算法初步、統(tǒng)計與統(tǒng)計案例
(時間:45分鐘 滿分:100分)
一、選擇題(本大題共6小題,每小題7分,共42分)
1.執(zhí)行下面的程序框圖,輸出的s值為( )
A.12 B.56 C.76 D.712
答案:B
解析:第一步:s=1-12=12,k=2,k<3;
第二步:s=12+13=56,k=3,輸出s=56.故選B.
2.某大學(xué)對1 000名學(xué)生的自主招生水平測試成績進(jìn)行統(tǒng)計,得到樣本頻率分布直方圖,如圖所示,則這1 000名學(xué)生在該次自主招生水平測試中成績不低于70分的學(xué)生人數(shù)是( )
A.300 B.400 C.500 D.600
答案:D
解析:依題意,得題中的1000名學(xué)生在該次自主招生水平測試中成績不低于70分的學(xué)生人數(shù)是1000×(0.035+0.015+0.010)×10=600,故選D.
3.已知某地區(qū)中小學(xué)生人數(shù)和近視情況分別如圖①和圖②所示.為了解該地區(qū)中小學(xué)生的近視形成原因,用分層抽樣的方法抽取2%的學(xué)生進(jìn)行調(diào)查,則樣本容量和抽取的高中生近視人數(shù)分別為( )
圖①
圖②
A.100,10 B.200,10 C.100,20 D.200,20
答案:D
解析:根據(jù)題意,總?cè)藬?shù)為3500+4500+2000=10000,
樣本容量為10000×2%=200.
根據(jù)分層抽樣的定義,抽取的高中生人數(shù)為200×200010000=40.
因?yàn)楦咧猩暵蕿?0%,所以抽取的高中生近視的人數(shù)為40×50%=20.
4.PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.根據(jù)某地某日早7點(diǎn)到晚8點(diǎn)甲、乙兩個PM2.5監(jiān)測點(diǎn)統(tǒng)計的數(shù)據(jù)(單位:毫克/立方米)列出的莖葉圖如圖所示,則甲、乙兩地PM2.5的方差較小的是( )
A.甲 B.乙 C.甲、乙相等 D.無法確定
答案:A
解析:從莖葉圖上可以觀察到:甲監(jiān)測點(diǎn)的樣本數(shù)據(jù)比乙監(jiān)測點(diǎn)的樣本數(shù)據(jù)更加集中,因此甲地PM2.5的方差較小.
5.有24名投資者想到海南某地投資,他們年齡的莖葉圖如圖所示,先將他們的年齡從小到大編號為1~24號,再用系統(tǒng)抽樣方法抽出6名投資者,邀請他們到海南某地實(shí)地考察.其中年齡不超過55歲的人數(shù)為( )
A.1 B.2 C.3 D.不確定
答案:B
解析:因?yàn)橄到y(tǒng)抽樣方法是等距抽樣,所以從小到大每4人(一個區(qū)間)抽出一人.因?yàn)椴怀^55歲落在(39,40,41,41),(42,45,51,53),所以應(yīng)抽取2人.
6.某高校進(jìn)行自主招生,先從報名者中篩選出400人參加筆試,再按筆試成績擇優(yōu)選出100人參加面試.現(xiàn)隨機(jī)調(diào)查了24名筆試者的成績,如下表所示:
分?jǐn)?shù)段
[60,65)
[65,70)
[70,75)
[75,80)
[80,85)
[85,90]
人數(shù)
2
3
4
9
5
1
據(jù)此估計允許參加面試的分?jǐn)?shù)線是( )
A.75 B.80 C.85 D.90
答案:B
解析:因?yàn)閰⒓庸P試的400人中擇優(yōu)選出100人,所以每個人被擇優(yōu)選出的概率P=100400=14.因?yàn)殡S機(jī)調(diào)查24名筆試者,所以估計能夠參加面試的人數(shù)為24×14=6.觀察表格可知,分?jǐn)?shù)在[80,85)的有5人,分?jǐn)?shù)在[85,90)的有1人,故面試的分?jǐn)?shù)線大約為80分,故選B.
二、填空題(本大題共2小題,每小題7分,共14分)
7.若一組樣本數(shù)據(jù)2,3,7,8,a的平均數(shù)為5,則該組數(shù)據(jù)的方差s2= .?
答案:265
解析:∵2+3+7+8+a5=5,∴a=5.
∴s2=15[(2-5)2+(3-5)2+(7-5)2+(8-5)2+(5-5)2]=265.
8.某高中1 000名學(xué)生的身高情況如下表,已知從這批學(xué)生隨機(jī)抽取1名,抽到偏矮男生的概率為0.12.若用分層抽樣的方法,從這批學(xué)生中隨機(jī)抽取50名,偏高學(xué)生有 名.?
身高情況
偏矮
正常
偏高
女生人數(shù)
100
273
y
男生人數(shù)
x
287
z
答案:11
解析:由題意可知x=1000×0.12=120,
所以y+z=220.
所以偏高學(xué)生占學(xué)生總數(shù)的比例為2201000=1150,所以隨機(jī)抽取50名學(xué)生中偏高學(xué)生有50×1150=11(名).
三、解答題(本大題共3小題,共44分)
9.(14分)(2020全國Ⅱ,文18)某沙漠地區(qū)經(jīng)過治理,生態(tài)系統(tǒng)得到很大改善,野生動物數(shù)量有所增加.為調(diào)查該地區(qū)某種野生動物的數(shù)量,將其分成面積相近的200個地塊,從這些地塊中用簡單隨機(jī)抽樣的方法抽取20個作為樣區(qū),調(diào)查得到樣本數(shù)據(jù)(xi,yi)(i=1,2,…,20),其中xi和yi分別表示第i個樣區(qū)的植物覆蓋面積(單位:公頃)和這種野生動物的數(shù)量,并計算得∑i=120xi=60,∑i=120yi=1 200,∑i=120(xi-x)2=80,∑i=120(yi-y)2=9 000,∑i=120(xi-x)(yi-y)=800.
(1)求該地區(qū)這種野生動物數(shù)量的估計值(這種野生動物數(shù)量的估計值等于樣區(qū)這種野生動物數(shù)量的平均數(shù)乘以地塊數(shù));
(2)求樣本(xi,yi)(i=1,2,…,20)的相關(guān)系數(shù)(精確到0.01);
(3)根據(jù)現(xiàn)有統(tǒng)計資料,各地塊間植物覆蓋面積差異很大.為提高樣本的代表性以獲得該地區(qū)這種野生動物數(shù)量更準(zhǔn)確的估計,請給出一種你認(rèn)為更合理的抽樣方法.并說明理由.
附:相關(guān)系數(shù)r=∑i=1n(xi-x)(yi-y)∑i=1n(xi-x)2∑i=1n(yi-y)2,2≈1.414.
解:(1)由已知得樣本平均數(shù)y=120∑i=120yi=60,從而該地區(qū)這種野生動物數(shù)量的估計值為60×200=12000.
(2)樣本(xi,yi)(i=1,2,…,20)的相關(guān)系數(shù)
r=∑i=120(xi-x)(yi-y)∑i=120(xi-x)2∑i=120(yi-y)2=80080×9000=223≈0.94.
(3)分層抽樣:根據(jù)植物覆蓋面積的大小對地塊分層,再對200個地塊進(jìn)行分層抽樣.
理由如下:由(2)知各樣區(qū)的這種野生動物數(shù)量與植物覆蓋面積有很強(qiáng)的正相關(guān).由于各地塊間植物覆蓋面積差異很大,從而各地塊間這種野生動物數(shù)量差異也很大,采用分層抽樣的方法較好地保持了樣本結(jié)構(gòu)與總體結(jié)構(gòu)的一致性,提高了樣本的代表性,從而可以獲得該地區(qū)這種野生動物數(shù)量更準(zhǔn)確的估計.
10.(14分)某省電視臺為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示,其中一個數(shù)字被污損.
(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率;
(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對成語知識的學(xué)習(xí)積累的熱情,從中獲益匪淺.現(xiàn)從觀看該節(jié)目的觀眾中隨機(jī)統(tǒng)計了4名觀眾的周均學(xué)習(xí)成語知識的時間y(單位:時)與年齡x(單位:歲),并制作了對照表(如下表所示):
年齡x
20
30
40
50
周均學(xué)習(xí)成語知識的時間y
2.5
3
4
4.5
由表中數(shù)據(jù)分析,x,y呈線性相關(guān)關(guān)系,試求線性回歸方程y^=b^x+a^,并預(yù)測年齡為60歲的觀眾周均學(xué)習(xí)成語知識的時間.
參考公式:b^=∑i=1nxiyi-nxyxi2-nx2,a^=y-b^x.
解:(1)設(shè)被污損的數(shù)字為a,則a有10種情況.
令88+89+90+91+92>83+83+87+90+a+99,則a<8,東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù),有8種情況,所求概率為810=45.
(2)由題意可知x=35,y=3.5,∑i=14xiyi=525,∑i=14xi2=5400,
所以b^=7100,a^=2120,所以y^=7100x+2120.
當(dāng)x=60時,y^=7100×60+2120=5.25(時).
故預(yù)測年齡為60歲的觀眾周均學(xué)習(xí)成語知識的時間為5.25時.
11.(16分)海水養(yǎng)殖場進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機(jī)抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下:
舊養(yǎng)殖法
新養(yǎng)殖法
(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān);
養(yǎng)殖法
箱產(chǎn)量
箱產(chǎn)量<50 kg
箱產(chǎn)量≥50 kg
舊養(yǎng)殖法
新養(yǎng)殖法
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.
附:
P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828
K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).
解:(1)舊養(yǎng)殖法的箱產(chǎn)量低于50kg的頻率為(0.012+0.014+0.024+0.034+0.040)×5=0.62.
因此,事件A的概率估計值為0.62.
(2)根據(jù)箱產(chǎn)量的頻率分布直方圖得列聯(lián)表
養(yǎng)殖法
箱產(chǎn)量
箱產(chǎn)量<50kg
箱產(chǎn)量≥50kg
舊養(yǎng)殖法
62
38
新養(yǎng)殖法
34
66
K2=200×(62×66-34×38)2100×100×96×104≈15.705.
由于15.705>6.635,因此可以在犯錯誤的概率不超過0.01的前提下認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān).
(3)箱產(chǎn)量的頻率分布直方圖表明:新養(yǎng)殖法的箱產(chǎn)量平均值(或中位數(shù))在50kg到55kg之間,舊養(yǎng)殖法的箱產(chǎn)量平均值(或中位數(shù))在45kg到50kg之間,且新養(yǎng)殖法的箱產(chǎn)量分布集中程度較舊養(yǎng)殖法的箱產(chǎn)量分布集中程度高,因此,可以認(rèn)為新養(yǎng)殖法的箱產(chǎn)量較高且穩(wěn)定,從而新養(yǎng)殖法優(yōu)于舊養(yǎng)殖法.
7
收藏