影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

高中數(shù)學(xué) 考前歸納總結(jié) 圓錐曲線與向量的綜合性問題

上傳人:艷*** 文檔編號:111550351 上傳時間:2022-06-21 格式:DOC 頁數(shù):8 大?。?23KB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學(xué) 考前歸納總結(jié) 圓錐曲線與向量的綜合性問題_第1頁
第1頁 / 共8頁
高中數(shù)學(xué) 考前歸納總結(jié) 圓錐曲線與向量的綜合性問題_第2頁
第2頁 / 共8頁
高中數(shù)學(xué) 考前歸納總結(jié) 圓錐曲線與向量的綜合性問題_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué) 考前歸納總結(jié) 圓錐曲線與向量的綜合性問題》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 考前歸納總結(jié) 圓錐曲線與向量的綜合性問題(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、圓錐曲線與向量的綜合性問題 一、常見基本題型: 在向量與圓錐曲線相結(jié)合的題目中,主要是利用向量的相等、平行、垂直去尋找坐標(biāo)之間的數(shù)量關(guān)系,往往要和根與系數(shù)的關(guān)系結(jié)合運用。 (1) 問題的條件以向量的形式呈現(xiàn),間接的考查向量幾何性質(zhì)、運算性質(zhì), 例1、設(shè),點在軸的負(fù)半軸上,點在軸上,且. 當(dāng)點在軸上運動時,求點的軌跡的方程; 解:(解法一),故為的中點. 設(shè),由點在軸的負(fù)半軸上,則 又, 又, 所以,點的軌跡的方程為 (解法二),故為的中點. 設(shè),

2、由點在軸的負(fù)半軸上,則 - 又由,故,可得 由,則有,化簡得: 所以,點的軌跡的方程為 例2、已知橢圓的方程為,它的一個焦點與拋物線的焦點 重合,離心率,過橢圓的右焦點作與坐標(biāo)軸不垂直的直線,交橢圓 于、兩點. (1)求橢圓的標(biāo)準(zhǔn)方程; (2)設(shè)點,且,求直線的方程; 解:(Ⅰ)設(shè)橢圓的右焦點為,因為的焦點坐標(biāo)為,所以 因為,則, 故橢圓方程為: (Ⅱ)由(I)得,設(shè)

3、的方程為() 代入,得, 設(shè)則, 所以直線的方程為 (2)所求問題以向量的形式呈現(xiàn) 例3、已知橢圓E的長軸的一個端點是拋物線的焦點,離心率是 (1)求橢圓E的方程; (2)過點C(—1,0),斜率為k的動直線與橢圓E相交于A、B兩點,請問x軸上 是否存在點M,使為常數(shù)?若存在,求出點M的坐標(biāo);若不存在,請 說明理由。 解:(1)根據(jù)條件可知橢圓的焦點在x軸, 且

4、 故所求方程為即, (2)假設(shè)存在點M符合題意,設(shè)AB:代入 得: 則 要使上式與無關(guān),則有 解得,存在點滿足題意。 例4、線段過y軸上一點,所在直線的斜率為,兩端點、 到y(tǒng)軸的距離之差為. (Ⅰ)求出以y軸為對稱軸,過、、三點的拋物線方程; (Ⅱ)過該拋物線的焦點作動弦,過、兩點分別作拋物

5、線的切線,設(shè) 其交點為,求點的軌跡方程,并求出的值. 解:(Ⅰ)設(shè)所在直線方程為,拋物線方程為, 且, ,不妨設(shè), 即 把代入得 , 故所求拋物線方程為 (Ⅱ)設(shè), 則過拋物線上、兩點的切線方程分別是 , 兩條切線的交點的坐標(biāo)為 設(shè)的直線方程為,代入得 故的坐標(biāo)為 點的軌跡為 而 故 (3)問

6、題的條件及待求的問題均已向量的形式呈現(xiàn) 例5、在直角坐標(biāo)系xOy中,長為的線段的兩端點C、D分別在x軸、y軸上 滑動,.記點P的軌跡為曲線E. (I)求曲線E的方程; (II)經(jīng)過點(0,1)作直線l與曲線E相交于A、B兩點,當(dāng)點 M在曲線E上時,求的值. 解:(Ⅰ)設(shè)C(m,0),D(0,n),P(x,y). 由=,得(x-m,y)=(-x,n-y), ∴得 由||=+1,得m2+n2=(+1)2, ∴(+1)2x2+y2=(+1)2, 整理,得曲線E的方程為x2+=1. (Ⅱ)設(shè)

7、A(x1,y1),B(x2,y2),由=+,知點M坐標(biāo)為(x1+x2,y1+y2). 設(shè)直線l的方程為y=kx+1,代入曲線E方程,得(k2+2)x2+2kx-1=0, 則x1+x2=-,x1x2=-. y1+y2=k(x1+x2)+2=, 由點M在曲線E上,知(x1+x2)2+=1, 即+=1,解得k2=2. 這時x1x2+y1y2=x1x2+(kx1+1)(kx2+1)=(1+k2)x1x2+k(x2+x2)+1=-, (x+y)(x+y)=(2-x)(2-x)=4-2(x+x)+(x1x2)2 =4-2[(x1+x2)2-2x1x2]+(x1x2)2=,

8、 cosá,?==-. 二、針對性練習(xí) 1. 已知圓M:及定點,點 P是圓M上的動點,點Q在NP上,點G在MP上, 且滿足 (1)求點G的軌跡C的方程; (2)過點K(2,0)作直線與曲線C交于A、B兩點, O是坐標(biāo)原點,設(shè) ,是否存在這樣的直線使四邊形OASB的對角 線相等?若存在,求出直線的方程; 若不存在,說明理由. 解:(1)由為PN的中點,且是PN的中垂線, ∴> ∴點G的軌跡是以M、N為焦點的橢圓,又 ∴

9、 (2) ∵.四邊形OASB為平行四邊行, 假設(shè)存在直線1,使四邊形OASB為矩形 若1的斜率不存在,則1的方程為 由>0. 這與相矛盾, ∴1的斜率存在. 設(shè)直線1的方程 ,化簡得: ∴ ∴ 由∴ ∴存在直線1:或滿足條件. 二、針對性練習(xí) 1.已知過拋物線的焦點,斜率為的直線交拋物線于, ()兩點,且. (1)求該拋物線的方程; (2)為坐標(biāo)原點,為拋

10、物線上一點,若,求的值. 解:(1)直線AB的方程是,與聯(lián)立, 消去,得,所以, 由拋物線定義得:,所以p=4, 拋物線方程為: (2)由p=4,化簡得, 從而,從而A(1,),B(4,) 設(shè)=, 又因為,即8(4), 即,解得 2、在平面直角坐標(biāo)系內(nèi)已知兩點、,若將動點的橫坐標(biāo)保持不變, 縱坐標(biāo)擴大到原來的倍后得到點,且滿足. (Ⅰ)求動點所在曲線的方程; (Ⅱ)過點作斜率為的直線

11、交曲線于、兩點,且, 又點關(guān)于原點的對稱點為點,試問、、、四點是否共圓?若共 圓,求出圓心坐標(biāo)和半徑;若不共圓,請說明理由. 解(Ⅰ)設(shè)點的坐標(biāo)為,則點的坐標(biāo)為, 依據(jù)題意,有 動點所在曲線的方程是 (Ⅱ)因直線過點,且斜率為,故有 聯(lián)立方程組,消去,得 設(shè)、,可得,于是. 又,得即 而點與點關(guān)于原點對稱,于是,可得點 若線段、的中垂線分別為和,,則有 聯(lián)立方程組,解得和的交點為 因此,可算得 所以、、、四點共圓,且圓心坐標(biāo)為半徑為

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!