影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

高中數(shù)學(xué)《兩角和與差的余弦》教案 蘇教版必修4

上傳人:艷*** 文檔編號:111563896 上傳時間:2022-06-21 格式:DOC 頁數(shù):3 大小:119KB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學(xué)《兩角和與差的余弦》教案 蘇教版必修4_第1頁
第1頁 / 共3頁
高中數(shù)學(xué)《兩角和與差的余弦》教案 蘇教版必修4_第2頁
第2頁 / 共3頁
高中數(shù)學(xué)《兩角和與差的余弦》教案 蘇教版必修4_第3頁
第3頁 / 共3頁

最后一頁預(yù)覽完了!喜歡就下載吧,查找使用更方便

10 積分

下載資源

資源描述:

《高中數(shù)學(xué)《兩角和與差的余弦》教案 蘇教版必修4》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)《兩角和與差的余弦》教案 蘇教版必修4(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第 1 課時:§3.1.1 兩角和與差的余弦 【三維目標(biāo)】: 一、知識與技能 1.掌握用向量方法推導(dǎo)兩角差的余弦公式,進一步體會向量方法的作用; 2.用余弦的差角公式推出余弦的和角公式,理解化歸思想在三角變換中的作用; 3.能用余弦的和差角公式進行簡單的三角函數(shù)式的化簡、求值及恒等式的證明 二、過程與方法 1.經(jīng)歷用向量的數(shù)量積推導(dǎo)出兩角差的余弦公式的過程,體驗和感受數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的過程,體會向量和三角函數(shù)的聯(lián)系; 2.通過向量的手段證明兩角差的余弦公式,讓學(xué)生進一步體會向量法作為一種有效手段的同時掌握兩角差的余弦函數(shù);講解例題,總結(jié)方法,鞏固練習(xí). 三、情感、態(tài)度與價值

2、觀 1.創(chuàng)設(shè)問題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強化學(xué)生的參與意識. 2.通過本節(jié)的學(xué)習(xí),使同學(xué)們對兩角和與差的三角函數(shù)有了一個全新的認(rèn)識;理解掌握兩角和與差的三角的各種變形,提高逆用思維的能力. 【教學(xué)重點與難點】: 重點: 兩角和與差的余弦公式的推導(dǎo)及其應(yīng)用. 難點: 兩角差的余弦公式的推導(dǎo). 【學(xué)法與教學(xué)用具】: 1. 學(xué)法: (1)自主性學(xué)習(xí)法:通過自學(xué)掌握兩角差的余弦公式. (2)探究式學(xué)習(xí)法:通過分析、探索、掌握兩角差的余弦公式的過程. (3)反饋練習(xí)法:以練習(xí)來檢驗知識的應(yīng)用情況,找出未掌握的內(nèi)容及其存在的差距. 2. 教法:啟發(fā)式教學(xué) 3.教學(xué)用

3、具:多媒體、實物投影儀. 【授課類型】:新授課 【課時安排】:1課時 【教學(xué)思路】: 一、創(chuàng)設(shè)情景,揭示課題 1.?dāng)?shù)軸兩點間的距離公式:. 2.點是終邊與單位圓的交點,則. 二、研探新知 兩角和的余弦公式的推導(dǎo)(向量法): 把看成兩個向量夾角的余弦,考慮用向量的數(shù)量積來研究。 在直角坐標(biāo)系中,以軸為始邊分別作角,其終邊分別與單位圓交于,,則由于余弦函數(shù)是周期為的偶函數(shù),所以,我們只需考慮的情況。 設(shè)向量=,=, 則 =||||= 另一方面,由向量數(shù)量積的坐標(biāo)表示,有=,所以 = 這就是兩角差的余

4、弦公式。 【探究】: 如圖3-1-2,在直角坐標(biāo)系中,單位圓與軸交于,以為始邊分別作出角,其終邊分別和單位圓交于,由,你能否導(dǎo)出兩角差的余弦公式? 在公式中用代替,就得到.() 這就是兩角和的余弦公式 【說明】: 公式對于任意的都成立。 【思考】: “用代替”的換元方法體現(xiàn)在圖形上具有什么幾何意義?你能直接利用向量的數(shù)量積推出兩角和的余弦公式嗎? 三、質(zhì)疑答辯,排難解惑,發(fā)展思維 例1(教材例1)利用兩角和(差)的余弦公式證明下列誘導(dǎo)公式: (1); (2) 例2(教材例2)利用兩角和(差)的余弦公式,求。 【舉一反三】: 1. 求值:(1) (2) (

5、1) (2). 【點評】:把一個具體角構(gòu)造成兩個角的和、差形式,有很多種構(gòu)造方法,例如:,要學(xué)會靈活運用. 【思考】:你會求① cos105°、②sin、③cos、④coscos-sinsin的值嗎? 例3(教材例3)已知,求的值 【思考】:在上例中,你能求出的值嗎? 【舉一反三】: 1.已知cos , ,求cos的值. 2.已知,是第三象限角,求的值. 提示:注意角、的象限,也就是符號問題. 3. 已知cos(2α-β)=-,sin (α-2β)=,且<α<,0<β<,求cos(α+β)的值 四、鞏固深化,反饋矯正 教材練習(xí)第2題,第3題 五、歸納整理,整體認(rèn)識 本節(jié)我們學(xué)習(xí)了兩角和與差的余弦公式,要求同學(xué)們掌握公式的推導(dǎo),能熟練運用公式,注意公式的逆用。在解題過程中注意角、的象限,也就是符號問題,學(xué)會靈活運用. 六、承上啟下,留下懸念 1.用兩點距離公式推導(dǎo)兩角和與差的余弦公式。 2.預(yù)習(xí)兩角和與差的正弦 七、板書設(shè)計(略) 八、課后記:

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!