影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

【高考復習方案2015年高三數(shù)學(文科)二輪復習(浙江省專用) 專題限時集訓15

上傳人:ra****d 文檔編號:112661496 上傳時間:2022-06-23 格式:DOC 頁數(shù):10 大?。?05.50KB
收藏 版權申訴 舉報 下載
【高考復習方案2015年高三數(shù)學(文科)二輪復習(浙江省專用) 專題限時集訓15_第1頁
第1頁 / 共10頁
【高考復習方案2015年高三數(shù)學(文科)二輪復習(浙江省專用) 專題限時集訓15_第2頁
第2頁 / 共10頁
【高考復習方案2015年高三數(shù)學(文科)二輪復習(浙江省專用) 專題限時集訓15_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

16 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《【高考復習方案2015年高三數(shù)學(文科)二輪復習(浙江省專用) 專題限時集訓15》由會員分享,可在線閱讀,更多相關《【高考復習方案2015年高三數(shù)學(文科)二輪復習(浙江省專用) 專題限時集訓15(10頁珍藏版)》請在裝配圖網上搜索。

1、專題限時集訓(十五)A [第15講 圓錐曲線中的熱點問題] (時間:5分鐘+40分鐘) 基礎演練 1.已知a,b為正常數(shù),F(xiàn)1,F(xiàn)2是兩個定點,且|F1F2|=2a(a是正常數(shù)),動點P滿足|PF1|+|PF2|=a2+1,則動點P的軌跡是(  ) A.橢圓 B.線段 C.橢圓或線段 D.直線 2.若直線y=kx+1與焦點在x軸上的橢圓+=1恒有公共點,則m的取值范圍為(  ) A.01 3.以拋物線y2=8x上的任意一點為圓心作圓與直線x+2=0相切,這些圓必過一定點,則這一定點的坐標是( 

2、 ) A.(0,2) B.(2,0) C.(4,0) D.(0,4) 4.已知點P是雙曲線-=1上任一點,過P作x軸的垂線,垂足為Q,則PQ的中點M的軌跡方程是(  ) A.-=1 B.-=1 C.-=1 D.-=1 5.若拋物線y2=2px的焦點在圓(x-p)2+(y-1)2=4內,則實數(shù)p的取值范圍是____. 提升訓練 6.在直角坐標平面內,已知兩點A(-2,0),B(2,0),動點Q到點A的距離為6,線段BQ的垂直平分線交AQ于點P,則點P的軌跡方程是(  ) A.+=1 B.+=1 C.+=1 D.+=1 7.已知點P為拋物線x2=12y的

3、焦點,A,B是雙曲線3x2-y2=12的兩個頂點,則△APB的面積為(  ) A.4 B.6 C.8 D.12 8.已知P為橢圓+=1上的一點,M,N分別為圓(x+3)2+y2=1和圓(x-3)2+y2=4上的點,則|PM|+|PN|的最小值為(  ) A.5 B.7 C.13 D.15 9.已知直線l1:4x-3y+6=0和直線l2:x=-1,拋物線y2=4x上一動點P到直線l1和直線l2的距離之和的最小值是(  ) A.2 B.3 C. D.. 10.已知P為拋物線y2=4x上一個動點,Q為圓x2+(y-3)2=

4、1上一個動點,那么點P到點Q的距離與點P到拋物線的準線距離之和的最小值是________. 11.已知動點M(x,y),向量m=(x-3,y),n=(x+3,y),且滿足|m|+|n|=8,則動點P的軌跡方程是____________. 12.如圖15-1所示,直線y=m與拋物線y2=4x交于點A,與圓(x-1)2+y2=4的實線部分交于點B, F為拋物線的焦點,則△ABF的周長的取值范圍是________. 圖15-1 13.已知拋物線C的頂點在坐標原點,焦點在x軸上,P(2,0)為定點. (1)若點P為拋物線的焦點,求拋物線C的方程. (2)若動圓M過點P,且圓心M在拋物線

5、C上運動,點A,B是圓M與y軸的兩交點,試推斷是否存在一條拋物線C,使|AB|為定值?若存在,求這個定值;若不存在,說明理由. 14.已知橢圓C:+=1(a>b>0)的離心率與等軸雙曲線的離心率互為倒數(shù),直線l:x-y+=0與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切. (1)求橢圓C的方程; (2)設M是橢圓的上頂點,過點M分別作直線MA, MB交橢圓于A,B兩點,設兩直線的斜率分別為k1, k2, 且k1+k2=2,證明:直線AB過定點(-1,-1). 15.已知拋物線的頂點為(0,0),準線為x=-2,不垂直

6、于x軸的直線x=ty+1與該拋物線交于A,B兩點,圓M以AB為直徑. (1)求拋物線的方程. (2)圓M交x軸的負半軸于點C,是否存在實數(shù)t,使得 △ABC的內切圓的圓心在x軸上?若存在,求出t的值;若不存在,說明理由. 專題限時集訓(十五)B [第15講 圓錐曲線中的熱點問題] (時間:5分鐘+40分鐘) 基礎演練 1.如圖15-2,橢圓C0:+=1(a>b>0,a,b為常數(shù)),動圓C1:x2+y2=t,b<t1<a.點A1,A2分別為C0的左,右頂點.C1與C0相交于A,B,C,D四點. (1)求直線AA1與直線A2B交點M的軌跡方程; (2)設動圓C2:x2+y2

7、=t與C0相交于A′,B′,C′,D′四點,其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等.證明:t+t為定值. 圖15-2 2.已知動點P到直線l:x+4=0的距離與它到點M(2,0)的距離之差為2,記點P的軌跡為曲線C. (1)求曲線C的方程. (2)問直線l上是否存在點Q,使得過點Q且斜率分別為k1,k2的兩直線與曲線C相切,同時滿足k1+2k2=0?若存在,求出點Q的坐標;若不存在,請說明理由. 3.已知圓心為F1的圓的方程為(x+2)2 +y2=32,F(xiàn)2(2,0),C是圓

8、F1上的動點,F(xiàn)2C的垂直平分線交F1C于M. (1)求動點M的軌跡方程; (2)設N(0,2),過點P(-1,-2)作直線l,交M的軌跡于不同于N的A,B兩點,直線NA,NB的斜率分別為k1,k2,證明:k1+k2為定值. 提升訓練 4.如圖15-3所示,兩條相交線段AB,PQ的四個端點都在拋物線y2=x上,其中,直線AB的方程為x=m,直線PQ的方程為y=x+n. (1)若n=0,∠BAP=∠BAQ,求m的值. (2)探究:是否存在常數(shù)m,當n變化時,恒有∠BAP=∠BAQ? 圖15-3

9、 5.設橢圓+=1(a>b>0)的左、右頂點分別為A,B,點P在橢圓上且異于A,B兩點,O為坐標原點. (1)若直線AP與BP的斜率之積為-,求橢圓的離心率; (2)若|AP|=|OA|,證明直線OP的斜率k滿足|k|>. 專題限時集訓(十五)A 【基礎演練】 1.C [解析] 因為a2+1≥2a(當且僅當a=1時,等號成立),所以|PF1|+|PF2|≥|F1F2|.當a≠1時,|PF1|+|PF2|>|F1F2|,此時動點P的軌跡是橢圓;當a=1時,|PF1|+|PF2|=|F1F2|,此時動點P的軌跡是線段F1F2. 2.B [解

10、析] 由于直線y=kx+1過定點(0,1),要使直線與橢圓恒有公共點,只需定點(0,1)在橢圓上或橢圓內,所以m≥1.由于焦點在x軸上,所以0

11、AQ于點P,所以|PB|=|PQ|,又|AQ|=6,所以|PA|+|PB|=|AQ|=6,又|PA|+|PB|>|AB|,從而點P的軌跡是中心在原點,以A,B為焦點的橢圓,其中2a=6,2c=4,所以b2=9-4=5,所以橢圓方程為+=1. 7.B [解析] 依題有P,A,B,故OP=3,AB=4,所以S△APB=·|AB|·|OP|=×4×3=6. 8.B [解析] 由題意知橢圓的兩個焦點F1,F(xiàn)2分別是兩圓的圓心,且|PF1|+|PF2|=10,從而|PM|+|PN|的最小值為|PF1|+|PF2|-1-2=7. 9.A [解析] 直線l2:x=-1為拋物線y2=4x的準線,由拋

12、物線的定義知,P到l2的距離等于P到拋物線的焦點F(1,0)的距離,故本題轉化為在拋物線y2=4x上找一個點P,使得P到點F(1,0)和直線l1的距離之和最小,最小值為F(1,0)到直線l1:4x-3y+6=0的距離,即dmin==2. 10.-1 [解析] 根據(jù)拋物線的定義知,點P到準線的距離即點P到焦點F(1,0)的距離.因為焦點F到圓心(0,3)的距離為,所以點P到圓上點Q與到準線距離之和的最小值為-1. 11.+=1 [解析] 由已知得+=8,即動點P到兩定點M (3,0),N(-3,0)的距離之和為常數(shù),且|PM|+|PN|>|MN|=6,所以動點P的軌跡是橢圓,且2a=8,

13、2c=6,所以橢圓方程為+=1. 12.(4,6) [解析] 過A作AA′垂直準線交準線于A′,由拋物線的定義知|AF|=|AA′|,而焦點恰為圓的圓心,所以△ABF的周長C=|AF|+|AB|+|BF|=|AA′|+|AB|+|BF|=|BA′|+|BF|,顯然2<|BA′|<4,所以4

14、令x=0,得y2-2by+4a-4=0,則y1+y2=2b,y1·y2=4a-4.所以|AB|===.設拋物線C的方程為y2=mx(m≠0),因為圓心M在拋物線C上,所以b2=ma,所以|AB|==.由此可得,當m=4時,|AB|=4為定值.故存在一條拋物線y2=4x,使|AB|為定值4. 14.解:(1)由題意得e=,b==1, 即=,a2-c2=1,解得a=, 故橢圓C的方程為+y2=1. (2)當直線AB的斜率不存在時,設A(x0,y0),則B(x0,-y0),由k1+k2=2得 + = 2,得x0=-1, 當直線AB的斜率存在時,設AB的方程為y=kx+b(b≠1),A(x

15、1,y1),B(x2,y2), 由 得(1+2k2)x2+4kbx+2b2-2=0, 則x1+x2=,x1·x2=. ∵k1+k2=2,∴+=2,∴=2, 即(2-2k)x2x1=(b-1)(x2+x1),∴(2-2k)(2b2-2)=(b-1)(-4kb), ∵b≠1,上式化簡得(1-k)(b+1)=-kb,∴k=b+1, 即y=kx+b=(b+1)x+b?b(x+1)=y(tǒng)-x, 故直線AB過定點(-1,-1). 15.解:(1)設拋物線方程為y2=ax(a>0), 又a=2×4=8, ∴拋物線方程為y2=8x. (2)設A(x1,y1),B(x2,y2),

16、 C(x0,0). 由得y2-8ty-8=0, 則 由點C在以AB為直徑的圓上可得·=0. 又=(x1-x0,y1-0),=(x2-x0,y2-0), ∴(x1-x0)(x2-x0)+y1y2=0. 又x1=ty1+1,x2=ty2+1, ∴1-[t(y1+y2)+2]x0+x+y1y2=0, ∴x-(8t2+2)x0-7=0.(*) 若存在t,使得△ABC的內心在x軸上,則kCA+kCB=0, ∴+=0, 即2ty1y2+(y1+y2)(1-x0)=0, 即2t(-8)+8t(1-x0)=0, ∴x0=-1. 結合(*)得,t=±. 專題限時集訓(十五)B

17、【基礎演練】 1.解:(1)設A(x1,y1),B(x1,-y1),又知A1(-a,0),A2(a,0),則 直線A1A的方程為y=(x+a),① 直線A2B的方程為y=(x-a),② 由①②得y2=(x2-a2).③ 由點A(x1,y1)在橢圓C0上,故+=1. 從而y=b2,代入③得 -=1(x<-a,y<0). (2)證明: 設A′(x2,y2),由矩形ABCD與矩形A′B′C′D′的面積相等,得 4|x1||y1|=4|x2||y2|, 故xy=xy. 因為點A,A′均在橢圓上,所以 b2x=b2x, 由t1≠t2,知x1≠x2,所以x+x=a2. 從而

18、y+y=b2, 因此t+t=a2+b2為定值. 2.解:(1)根據(jù)拋物線的定義,曲線C是以(2,0)為焦點,x=-2為準線的拋物線,所以p=4. 故曲線C的方程為y2=8x. (2)設Q(-4,y0),過Q與曲線C相切的直線設為y-y0=k(x+4)(k≠0), 聯(lián)立得ky2-8y+8y0+32k=0. Δ=64-4k(8y0+32k)=0,即4k2+y0k-2=0, 所以因為k1,k2是兩切線的斜率且滿足 k1=-2k2,所以解得 又因為k1·k2=-,所以y0=±2. 故存在點Q(-4,2)和(-4,-2),使得過點Q的兩直線與曲線C相切,且滿足k1+2k2=0. 3

19、.解:(1)由線段的垂直平分線的性質,得|MF2|=|MC|, 又|F1C|=4 ,∴|MF1|+|MC|=4 ,∴|MF1|+|MF2|=4 , ∴ 動點M的軌跡是以F1,F(xiàn)2為焦點,長軸長為4 的橢圓. 由c=2,a=2 ,得b2=a2-c2=4, ∴動點M的軌跡方程為+=1. (2)當直線l的斜率不存在時, 求得A ,B,則k1+k2=4. 當直線l的斜率存在時,設其方程為y+2=k(x+1), 由得(1+2k2)x2+4k(k-2)x+2k2-8k=0, 設A(x1,y1),B(x2,y2),則x1+x2=-, x1x2=, 從而k1+k2=+== 2

20、k-(k-4)=4, 綜上,恒有k1+k2=4. 【提升訓練】 4.解:(1)由解得P(0,0),Q(4,2). 因為∠BAP=∠BAQ,所以kAP+kAQ=0. 設A(m,y0),則+=0, 化簡得my0=2y0+m, 又y=m,聯(lián)立解得m=1或m=4. 因為AB平分∠PAQ,所以m=4不合適,故m=1. (2)設P(x1,y1),Q(x2,y2),由得y2-2y+2n=0. Δ=4(1-2n),y1+y2=2,y1y2=2n. 若存在常數(shù)m,當n變化時,恒有∠BAP=∠BAQ,則由(1)知,只可能m=1. 當m=1時,A(1,-1),∠BAP=∠BAQ等價于+

21、=0, 即(y1+1)(2y2-2n-1)+(y2+1)(2y1-2n-1)=0, 即4y1y2=(2n-1)(y1+y2)+2(2n+1), 即8n=2(2n-1)+2(2n+1),此式恒成立. 也可以從kAP+kAQ=+==0恒成立來說明 所以,存在常數(shù)m=1,當n變化時,恒有∠BAP=∠BAQ. 5.解:(1)設點P的坐標為(x0,y0). 由題意,有+=1.?、? 由A(-a,0),B(a,0),得kAP=,kBP=. 由kAP·kBP=-,可得x=a2-2y,代入①并整理得(a2-2b2)y=0.由于y0≠0,故a2=2b2.于是e2==,所以橢圓的離心率e=. (

22、2)證明:(方法一) 依題意,直線OP的方程為y=kx, 設點P的坐標為(x0,y0). 由條件得消去y0并整理得 x=.② 由|AP|=|OA|,A(-a,0)及y0=kx0,得(x0+a)2+k2x=a2.整理得(1+k2)x+2ax0=0.而x0≠0,于是x0=,代入②,整理得(1+k2)2=4k2+4.由a>b>0,故(1+k2)2>4k2+4,即k2+1>4,因此k2>3,所以|k|>. (方法二)依題意,直線OP的方程為y=kx,可設點P的坐標為(x0,kx0).由點P在橢圓上,有+=1.因為a>b>0,kx0≠0,所以+<1, 即(1+k2)x<a2.③ 由|AP|=|OA|,A(-a,0),得(x0+a)2+k2x=a2,整理得(1+k2)x+2ax0=0,于是x0=,代入③,得(1+k2)<a2,解得k2>3,所以|k|>.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!