影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2019-2020年高三數(shù)學(xué)《直線和圓的方程》復(fù)習(xí)教案 新人教A版

上傳人:ya****h 文檔編號:114444424 上傳時(shí)間:2022-06-28 格式:DOCX 頁數(shù):8 大小:30.38KB
收藏 版權(quán)申訴 舉報(bào) 下載
2019-2020年高三數(shù)學(xué)《直線和圓的方程》復(fù)習(xí)教案 新人教A版_第1頁
第1頁 / 共8頁
2019-2020年高三數(shù)學(xué)《直線和圓的方程》復(fù)習(xí)教案 新人教A版_第2頁
第2頁 / 共8頁
2019-2020年高三數(shù)學(xué)《直線和圓的方程》復(fù)習(xí)教案 新人教A版_第3頁
第3頁 / 共8頁

本資源只提供3頁預(yù)覽,全部文檔請下載后查看!喜歡就下載吧,查找使用更方便

15 積分

下載資源

資源描述:

《2019-2020年高三數(shù)學(xué)《直線和圓的方程》復(fù)習(xí)教案 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)《直線和圓的方程》復(fù)習(xí)教案 新人教A版(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、2019-2020年高三數(shù)學(xué)《直線和圓的方程》復(fù)習(xí)教案新人教A版 一、本講進(jìn)度 《直線和圓的方程》復(fù)習(xí) 二、本講主要內(nèi)容 1、直線方程的五種表現(xiàn)形式,如何求直線方程;二元一次不等式的幾何意義及運(yùn)用。 2、圓的方程三種形式,如何求圓的方程。 3、直線和圓位置關(guān)系的研究。 三、復(fù)習(xí)指導(dǎo) 1、曲線和方程是中學(xué)數(shù)學(xué)的兩種常見研究對象。借助于平面直角坐標(biāo)系,形和數(shù)可以得到高度的統(tǒng)一,它們最基本的對應(yīng)關(guān)系是點(diǎn)和有序數(shù)對的一一對應(yīng)。當(dāng)點(diǎn)運(yùn)動形成軌跡時(shí),對應(yīng)坐標(biāo)便會滿足一個(gè)方程。當(dāng)曲線C和方程F(x,y)=0滿足如下關(guān)系時(shí):①曲線C上點(diǎn)的坐標(biāo)都是方程F(x,y)=0的解;②以方程F(x,y)=

2、0的解為坐標(biāo)的點(diǎn)都在曲線C上,則稱曲線C為方程F(x,y)=0表示的曲線;方程F(x,y)=0是曲線C表示的方程。從集合角度看,點(diǎn)集(曲線)與方程解集相等。解析幾何研究的內(nèi)容就是給定曲線C,如何求出它所對應(yīng)的方程,并根據(jù)方程的理論研究曲線的幾何性質(zhì)。其特征是以數(shù)解形。坐標(biāo)法是幾何問題代數(shù)化的重要方法。 2、直線的傾斜角a和斜率k是描述直線位置的重要參數(shù),它們之間關(guān)系是正切函數(shù)關(guān)系:k=tana,a丘[0,,當(dāng)a=時(shí),直線斜率不存在,否則由a求出唯一的k與之對應(yīng)。 當(dāng)已知k,求傾斜角a時(shí):k三0時(shí),a二arctank;k<0時(shí),a=n+arctank?;颍簁=0時(shí),a=0;kM0時(shí),cota

3、=,a=arccot。 由正切函數(shù)可知,當(dāng)ae(0,),a遞增時(shí),斜率k—+s。當(dāng)a£(,n),a遞減時(shí),斜率k—-8。 當(dāng)涉及到斜率參數(shù)時(shí),通常對k是否存在分類討論。 3、直線是平面幾何的基本圖形,它與方程中的二元一次方程Ax+By+C=0(A2+B2工0)——對應(yīng)。 從幾何條件看,已知直線上一點(diǎn)及直線方向與已知直線上兩點(diǎn)均可確定直線;從對應(yīng)方程看,直線方程兩種典型形式:點(diǎn)斜式(斜截式),兩點(diǎn)式(截距式),因此求直線方程,常用待定系數(shù)法。即根據(jù)題意,選擇方程的適當(dāng)形式;由已知條件,列關(guān)于參數(shù)的方程(組)。 當(dāng)點(diǎn)P(x0,y/在直線Ax+By+C=0上時(shí),其坐標(biāo)滿足方程Ax0+By0

4、+C=0;當(dāng)P不在直線Ax+By+C=0上時(shí),AXo+By°+CM0,即A^+By+00或Ax+By+C<0。這就是二元一次不等式的幾何意義:二元一次不等式Ax+By+C>0(或〈0)表示直線Ax+By+C=0上方或下方區(qū)域,其具體位置的確定常用原點(diǎn)(0,0)代入檢驗(yàn)。利用此幾何意義,可以解決一類二元函數(shù)的最值問題。這就是線性規(guī)劃的內(nèi)容。 因直線與二元一次方程Ax+By+C=0(A2+B2工0)——對應(yīng),即由有序數(shù)組(A,B,C)確定,因此研究直線與直線之間的位置關(guān)系就是考察直線對應(yīng)的數(shù)組間關(guān)系。 設(shè)直線:Ax+By+C=0(A2+B2^0),直線:Ax+By+C=0(A2+B2^0)

5、111111222222 貝y:〃 12 與相交ABMAB 121221 其夾角公式為,其中k1,k2分別表示]及2斜率,當(dāng)]或2斜率不存在時(shí),畫圖通過三角形求解,]與2夾角為e丘(0,] 特例:]丄2A1A2+B1B2=0(此時(shí)不能用夾角公式求解) 利用點(diǎn)P(x0,y0)到直線:Ax+By+C=O的距離公式宀=可以求出兩平行直線:Ax+By+CjO,Ax+By+C=0(CMC)間的距離d=。 212 4、當(dāng)直線位置不確定時(shí),直線對應(yīng)的方程中含有參數(shù)。含參數(shù)方程中有兩種特殊情形,它們的對應(yīng)的直線是有規(guī)律的,即旋轉(zhuǎn)直線系和平行直線系。 在點(diǎn)斜式方程y-y0=k(x-x0)中,

6、當(dāng)(x。,y。)確定,k變化時(shí),該方程表示過定點(diǎn)(x0,y。)的旋轉(zhuǎn)直線系,當(dāng)k確定,(x0,y0)變化時(shí),該方程表示平行直線系。 這些直線系還有其它表示形式: (1)已知直線:Ax+By+C=0,則 方程Ax+By+m=0(m為參數(shù))表示與平行的直線系;方程-Bx+Ay+n=O(n為參數(shù))表示與垂直的直線系。 (2)已知直線:Ax+By+C=0,直線:Ax+By+C=0,則方程Ax+By+C+入(Ax+By+C)=0 111=12222111222表示過]與2交點(diǎn)的直線系(不含2) 掌握含參數(shù)方程的幾何意義是某種直線系,不僅可以加深數(shù)形結(jié)合的思想,還可以優(yōu)化解題思想。 5、圓與

7、二元二次方程一一對應(yīng),這些二元二次方程方程特征為:(1)二次項(xiàng)中無xy交叉項(xiàng);(2)x2,y2項(xiàng)前面系數(shù)相等;(3)x,y的一次項(xiàng)系數(shù)D,E及常數(shù)項(xiàng)F滿足D2+E2-4F〉0。 圓方程常見形式:(1)標(biāo)準(zhǔn)式:(x-a)2+(y-b)2=R2(R〉0),其中(a,b)為圓心,R為半徑;(2)—般式:x2+y2+Dx+Ey+F=0;(3)參數(shù)式:(x-a)2+(y-b)2=R2(R〉0)的參數(shù)式為:x=a+Rcose,y=b+Rsine,其中e為參數(shù),表示旋轉(zhuǎn)角,參數(shù)式常用來表示圓周上的點(diǎn)。 求圓方程的原理與求直線方程完全類似。 直線和圓位置關(guān)系及圓和圓位置關(guān)系常借助于平面幾何知識,而不采用

8、方程組理論(厶法)。 6、對稱是平面幾何的基本變換。在掌握點(diǎn)關(guān)于點(diǎn)及直線對稱的基礎(chǔ)上,理解曲線與曲線之間的中心對稱及軸對稱。善于利用對稱的知識解題。 7、本章主要思想方法:數(shù)形結(jié)合,分類討論,函數(shù)與方程,等價(jià)變換等。 四、典型例題 例1、已知定點(diǎn)P(6,4)與定直線1:y=4x,過P點(diǎn)的直線與]交于第一象限Q點(diǎn),與x軸正半軸交于點(diǎn)M,求使△0QM面積最小的直線方程。 解題思路分析: 直線是過點(diǎn)P的旋轉(zhuǎn)直線,因此是選其斜率k作為參數(shù),還是選擇點(diǎn)Q(還是M)作為參數(shù)是本題關(guān)鍵。 通過比較可以發(fā)現(xiàn),選k作為參數(shù),運(yùn)算量稍大,因此選用點(diǎn)參數(shù)。 設(shè)Q(x,4x),M(m,0)00 TQ

9、,P,M共線 k=k PQPM ?? 解之得: Tx>0,m>0 0 .x-1>0 0 110x2 ..S=IOM14x=2mx=iAOMQ200x_1 0 令x°T二t,則t>0 c10(t+1)21 S==10(t+-+2)240 tt 當(dāng)且僅當(dāng)t=1,x0=11時(shí),等號成立 此時(shí)Q(11,44),直線:x+y-10=0 評注:本題通過引入?yún)?shù),建立了關(guān)于目標(biāo)函數(shù)的函數(shù)關(guān)系式,再由基本不等式再 △OQM 此目標(biāo)函數(shù)的最值。要學(xué)會選擇適當(dāng)參數(shù),在解析幾何中,斜率k,截距b角度0,點(diǎn)的坐標(biāo)都是常用參數(shù),特別是點(diǎn)參數(shù)。 例2、已知△ABC中,A(2,-1

10、),B(4,3),C(3,-2),求: 1)BC邊上的高所在直線方程;(2)AB邊中垂線方程; (3) ZA平分線所在直線方程。解題思路分析: (1) Tk=5 BC .BC邊上的高AD所在直線斜率k=.AD所在直線方程y+1=(x-2)即x+5y+3=0 (2) TAB中點(diǎn)為(3,1),k=2 AB .AB中垂線方程為x+2y-5=0 (3) 設(shè)ZA平分線為AE,斜率為k,則直線AC到AE的角等于AE到AB的角。 Tk=-1,k=2 ACAB .k2+6k-1=0 k=_3-(舍),k=_3+ ???AE所在直線方程為(-3)x-y-2+5=0 評注:在求角A平

11、分線時(shí),必須結(jié)合圖形對斜率k進(jìn)行取舍。一般地涉及到角平分線這類問題時(shí),都要對兩解進(jìn)行取舍。也可用軌跡思想求AE所在直線方程,設(shè)P(x,y)為直線AE上任一點(diǎn),則P到AB、AC距離相等,得,化簡即可。還可注意到,AB與AC關(guān)于AE對稱。 例3、(1)求經(jīng)過點(diǎn)A(5,2),B(3,2),圓心在直線2x-y-3=0上圓方程; (2)設(shè)圓上的點(diǎn)A(2,3)關(guān)于直線x+2y=0的對稱點(diǎn)仍在這個(gè)圓上,且與直線x-y+l=O相交的弦長為,求圓方程。 解題思路分析:研究圓的問題,既要理解代數(shù)方法,熟練運(yùn)用解方程思想,又要重視幾何性質(zhì)及定義的運(yùn)用,以降低運(yùn)算量??傊?,要數(shù)形結(jié)合,拓寬解題思路。 (1)法

12、一:從數(shù)的角度 若選用標(biāo)準(zhǔn)式:設(shè)圓心P(x,y),則由丨PA|=|PB|得:(X0-5)2+(y0-2)2=(X0-3)2+(y0-2)2又2x-y-3=0 00 兩方程聯(lián)立得:,|PA|= ?°?圓標(biāo)準(zhǔn)方程為(x-4)2+(y-5)2=10 若選用一般式:設(shè)圓方程x2+y2+Dx+Ey+F=0,則圓心() 52+22+5D+2E+F=0 ???卜+22+3D+2E+F=0 DF 2x(--)-(--)-3=0〔22 ‘D=-8 解之得:<E=-10 F=31 法二:從形的角度 AB為圓的弦,由平幾知識知,圓心P應(yīng)在AB中垂線x=4上,則由得圓心P(4,5) ?

13、半徑r=|PA|= 顯然,充分利用平幾知識明顯降低了計(jì)算量 (2)設(shè)A關(guān)于直線x+2y=0的對稱點(diǎn)為A' 由已知AA'為圓的弦 AA'對稱軸x+2y=0過圓心 設(shè)圓心P(-2a,a),半徑為R 則R=|PA|=(-2a-2)2+(a-3)2 又弦長, ? ? ? 4(a+1)2+(a-3)2=2+ ? a=-7或a=-3 當(dāng)a=-7時(shí),R二;當(dāng)a=-3時(shí),R= 所求圓方程為(x-6”+(y+3)2=52或(x-14)2+(y+7)2=244 例4、已知方程x2+y2-2(m+3)x+2(l-4m2)y+16m4+9=0表示一個(gè)圓,(1)求實(shí)數(shù)m取值范圍;(2)求圓半徑

14、r取值范圍;(3)求圓心軌跡方程。 解題思路分析: (1)m滿足[-2(m+3)]2+[2(l-4m2)]2-4(16m4+9)〉0,即7m2-6m-l〈0 (3)半徑r=丫'一7m2+6m+1=■-7(m——)2H 77 ???時(shí), ???O〈rW (3)設(shè)圓心P(x,y),則消去m得:y=4(x-3)2-1又 ???所求軌跡方程為(x-3)2=(y+1)() 例5、如圖,過圓0:x2+y2=4與y軸正半軸交點(diǎn)A作此圓的切線,M為上任一點(diǎn),過 M作圓0的另一條切線,切點(diǎn)為Q,求AMAQ垂心P的軌跡方程。 解題思路分析: 從尋找點(diǎn)P滿足的幾何條件著手,著眼于平幾知識的運(yùn)

15、用。 連OQ,則由OQ丄MQ,AP丄MQ得OQ〃AP同理,OA〃PQ 又OA=OQ ? OAPQ為菱形 ? |PA|=|OA|=2 設(shè)P(x,y),Q(x0,y0),則 又x2+y2=4 00 x2+(y—2”=4(xMO) 評注:一般說來,當(dāng)涉及到圓的切線時(shí),總考慮過焦點(diǎn)的弦與切線的垂直關(guān)系;涉及到 圓的弦時(shí),常取弦的中點(diǎn),考慮圓心、弦的中點(diǎn)、弦的端點(diǎn)組成的直角三角形。六、同步練習(xí) (一) 選擇題 1、若直線(m2-1)x-y+1-2m=0不過第一象限,則實(shí)數(shù)m取值范圍是 A、-1〈mWB、WmW1C、

16、1=0的夾角為,則m值為 A、或-3B、-3或C、-3或3D、或3 3、點(diǎn)P在直線x+y-4=0上,O為原點(diǎn),則|OP|的最小值是 A、2B、C、D、 4、過點(diǎn)A(1,4),且橫縱截距的絕對值相等的直線共有 A、1條B、2條C、3條D、4條 5、圓x2+y2-4x+2y+C=0與y軸交于A、B兩點(diǎn),圓心為P,若ZAPB=90。,則C的值是 A、-3B、3C、D、8 6、若圓(x-3)2+(y+5)2=r2上有且只有兩個(gè)點(diǎn)到直線4x-3y-2=0距離等于1,則半徑r取值范圍是 A、(4,6)B、[4,6)C、(4,6]D、[4,6] 7、將直線x+y-1=0繞點(diǎn)(1,0)順時(shí)

17、針旋轉(zhuǎn)后,再向上平移一個(gè)單位,此時(shí)恰與圓x2+(y-1)2=R2相切,則正數(shù)R等于 A、B、C、1D、 8、方程x2+y2+2ax-2ay=0所表示的圓 A、關(guān)于x軸對稱B、關(guān)于y軸對稱 C、關(guān)于直線x-y=0對稱D、關(guān)于直線x+y=0對稱 (二) 填空題 9、直線ax+by+c=0與直線dx+ey+c=0的交點(diǎn)為(3,-2),則過點(diǎn)(a,b),(d,e)的直 線方程是。 10、已知{(x,y)|(m+3)x+y=3m-4}A{(x,y)|7x+(5-m)y-8=0}=?,則直線(m+3)x+y二 3m+4與坐標(biāo)軸圍成的三角形面積是。 ‘3x+8y+15>0 11、已知x

18、,y滿足<5x+3y-6<0,則x-y的最大值為,最小值為。 2x—5y+10>0 12、過點(diǎn)A(2,1),且在坐標(biāo)軸截距相等的直線方程是。 13、已知圓:(x-1)2+y2=1,作弦0A,則OA中點(diǎn)的軌跡方程是。 (三) 解答題 14、已知y=2x是厶ABC中ZC平分線所在直線方程,A(-4,2),B(3,1),求點(diǎn)C坐標(biāo),并判斷△ABC形狀。 15、已知n條直線:x-y+c=0(i=1,2,…,n),其中C=,C

19、+C=0與x-y+C=0與x軸、y軸圍成的圖形面積。 n-1n 16、已知與曲線C:x2+y2-2x-2y+1=0相切的直線交x、y軸于A、B兩點(diǎn),O為原點(diǎn),|OA|=a, |OB|=b,a>2,b>2,(1)求證:(a-2)(b-2)=2;(2)求線段AB中點(diǎn)的軌跡方程;(3)求△AOB面積的最小值。 17、已知兩圓x2+y2=4和x2+(y-8)2=4(1)若兩圓分別在直線y=x+b兩側(cè)求b取值范圍;(2)求過點(diǎn)A(0,5)且和兩圓都沒有公共點(diǎn)的直線的斜率k的范圍。 18、當(dāng)01,y>1) (3) 17、(1)畫圖3WbW5 (2)k£() 18、

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!