《2018-2019年高中數(shù)學(xué) 第三章 統(tǒng)計(jì)案例 課時(shí)跟蹤訓(xùn)練17 回歸分析的基本思想及其初步應(yīng)用 新人教A版選修2-3》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018-2019年高中數(shù)學(xué) 第三章 統(tǒng)計(jì)案例 課時(shí)跟蹤訓(xùn)練17 回歸分析的基本思想及其初步應(yīng)用 新人教A版選修2-3(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、課時(shí)跟蹤訓(xùn)練(十七) 回歸分析的基本思想及其初步應(yīng)用
(時(shí)間45分鐘)
題型對(duì)點(diǎn)練(時(shí)間20分鐘)
題組一 求線性回歸方程
1.已知x與y之間的幾組數(shù)據(jù)如下表:
x
1
2
3
4
5
6
y
0
2
1
3
3
4
假設(shè)根據(jù)上表數(shù)據(jù)所得線性回歸方程為=x+.若某同學(xué)根據(jù)上表中的前兩組數(shù)據(jù)(1,0)和(2,2)求得的直線方程為y=b′x+a′,則以下結(jié)論正確的是( )
A.>b′,>a′ B.>b′,a′ D.,a′=-2<.
[答案]
2、 C
2.對(duì)變量x,y有觀測(cè)數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點(diǎn)圖(1);對(duì)變量u,v有觀測(cè)數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點(diǎn)圖(2),由這兩個(gè)散點(diǎn)圖可以判斷( )
A.變量x與y正相關(guān),u與v正相關(guān)
B.變量x與y正相關(guān),u與v負(fù)相關(guān)
C.變量x與y負(fù)相關(guān),u與v正相關(guān)
D.變量x與y負(fù)相關(guān),u與v負(fù)相關(guān)
[解析] 夾在帶狀區(qū)域內(nèi)的點(diǎn),總體呈上升趨勢(shì)的屬于正相關(guān),總體呈下降趨勢(shì)的屬于負(fù)相關(guān).由這兩個(gè)散點(diǎn)圖可以判斷,變量x與y負(fù)相關(guān),u與v正相關(guān),故選C.
[答案] C
3.某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)
3、行試銷,得到如下數(shù)據(jù):
單價(jià)x(元)
8
8.2
8.4
8.6
8.8
9
銷量y(件)
90
84
83
80
75
68
(1)求回歸直線方程=x+,其中=-20,=-;
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷售收入-成本)
[解] (1)由于=(8+8.2+8.4+8.6+8.8+9)=8.5,
=(90+84+83+80+75+68)=80.
所以=-=80+20×8.5=250,從而回歸直線方程為=-20x+250.
(2)設(shè)工廠獲得的利
4、潤(rùn)為L(zhǎng)元,依題意得L=x(-20x+250)-4(-20x+250)=-20x2+330x-1000=-202+361.25.
當(dāng)且僅當(dāng)x=8.25時(shí),L取得最大值.
故當(dāng)單價(jià)定為8.25元時(shí),工廠可獲得最大利潤(rùn).
題組二 線性回歸分析
4.對(duì)變量x,y進(jìn)行回歸分析時(shí),依據(jù)得到的4個(gè)不同的回歸模型畫出殘差圖,則下列模型擬合精度最高的是( )
[解析] 用殘差圖判斷模型的擬合效果,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說(shuō)明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說(shuō)明模型的擬合精度越高.
[答案] A
5.在回歸分析中,相關(guān)指數(shù)R2的值越大,說(shuō)明殘差平方和( )
A.越大
5、 B.越小
C.可能大也可能小 D.以上均錯(cuò)
[解析] 因?yàn)镽2=1-,所以當(dāng)R2越大時(shí),(yi-i)2越小,即殘差平方和越?。?
[答案] B
6.通過(guò)下面的殘差圖,我們發(fā)現(xiàn)在采集樣本點(diǎn)的過(guò)程中,樣本點(diǎn)數(shù)據(jù)不準(zhǔn)確的為( )
A.第四個(gè) B.第五個(gè) C.第六個(gè) D.第七個(gè)
[解析] 由題圖可知第六個(gè)數(shù)據(jù)的偏差最大,故選C.
[答案] C
7.在一段時(shí)間內(nèi),某淘寶網(wǎng)店一種商品的銷售價(jià)格x元和日銷售量y件之間的一組數(shù)據(jù)為:
價(jià)格x元
22
20
18
16
14
日銷售量y件
37
41
43
50
56
求出y關(guān)于x的回歸方程,并說(shuō)明該方
6、程擬合效果的好壞.
參考數(shù)據(jù):xiyi=3992,x=1660.
[解] 作出散點(diǎn)圖(此處略),觀察散點(diǎn)圖,可知這些點(diǎn)散布在一條直線的附近,故可用線性回歸模型來(lái)擬合數(shù)據(jù).
因?yàn)椋剑?8,
==45.4.
所以==-2.35,
=45.4-(-2.35)×18=87.7.
所以回歸方程為=-2.35x+87.7.
yi-i與yi-的值如下表:
yi-i
1
0.3
-2.4
-0.1
1.2
yi-
-8.4
-4.4
-2.4
4.6
10.6
計(jì)算得(yi-i)2=8.3,
(yi-)2=229.2,
所以R2=1-≈0.964.
因?yàn)?.96
7、4很接近于1,所以該模型的擬合效果比較好.
題組三 非線性回歸分析
8.若一函數(shù)模型為y=sin2α+2sinα+1,為將y轉(zhuǎn)化為t的回歸直線方程,則需做變換t=( )
A.sin2α B.(sinα+1)2
C.2 D.以上都不對(duì)
[解析] 因?yàn)閥是關(guān)于t的回歸直線方程,實(shí)際上就是y是關(guān)于t的一次函數(shù),又因?yàn)閥=(sinα+1)2,若令t=(sinα+1)2,則可得y與t的函數(shù)關(guān)系式為y=t,此時(shí)變量y與變量t是線性相關(guān)關(guān)系.故選B.
[答案] B
9.在彩色顯影中,由經(jīng)驗(yàn)可知:形成染料光學(xué)密度y與析出銀的光學(xué)密度x由公式y(tǒng)=Ae (b<0)表示.現(xiàn)測(cè)得試驗(yàn)數(shù)據(jù)如下:
8、
xi
0.05
0.06
0.25
0.31
0.07
0.10
yi
0.10
0.14
1.00
1.12
0.23
0.37
xi
0.38
0.43
0.14
0.20
0.47
yi
1.19
1.25
0.59
0.79
1.29
試求y對(duì)x的回歸方程.
[解] 由題意知,對(duì)于給定的公式y(tǒng)=Ae(b<0)兩邊取自然對(duì)數(shù),得lny=lnA+,與線性回歸方程相對(duì)照可以看出,只要取u=,v=lny,a=lnA,就有v=a+bu.
這是v對(duì)u的線性回歸直線方程,對(duì)此我們?cè)偬子孟嚓P(guān)性檢驗(yàn),求回歸系數(shù)b和a.題目中所給的數(shù)據(jù)由
9、變量置換u=,v=lny,變?yōu)槿缦卤硭镜臄?shù)據(jù).
ui
20.000
16.667
4.000
3.226
14.286
10.000
vi
-2.303
-1.966
0
0.113
-1.470
-0.994
ui
2.632
2.326
7.143
5.000
2.128
vi
0.174
0.223
-0.528
-0.236
0.255
可求得b≈-0.146,a≈0.548,
∴=0.548-0.146u.
綜合提升練(時(shí)間25分鐘)
一、選擇題
1.如圖所示是四個(gè)殘差圖,其中回歸模型的擬合效果最好的是(
10、)
[解析] 選項(xiàng)A與B中的殘差圖都是水平帶狀分布,并且選項(xiàng)B的殘差圖散點(diǎn)分布集中,在更狹窄的范圍內(nèi),所以B中回歸模型的擬合效果最好,選B.
[答案] B
2.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表:
廣告費(fèi)用x(萬(wàn)元)
4
2
3
5
銷售額y(萬(wàn)元)
49
26
39
54
根據(jù)上表可得回歸方程=x+中的為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬(wàn)元時(shí)銷售額為( )
A.63.6萬(wàn)元 B.65.5萬(wàn)元
C.67.7萬(wàn)元 D.72.0萬(wàn)元
[解析] 樣本點(diǎn)的中心是(3.5,42),則=-=42-9.4×3.5=9.1,所以回歸直線方程是=9.4x
11、+9.1,把x=6代入得=65.5.
[答案] B
3.某飲料店的日銷售收入y(單位:百元)與當(dāng)天平均氣溫x(單位:度)之間有下列數(shù)據(jù):
x
-2
-1
0
1
2
y
5
4
2
2
1
甲、乙、丙三位同學(xué)對(duì)上述數(shù)據(jù)進(jìn)行了研究,分別得到了x與y之間的三個(gè)線性回歸方程:①=-x+2.8,②=-x+3,③=-1.2x+2.6;其中正確的是( )
A.① B.② C.③ D.①③
[解析] 回歸方程=x+表示的直線必過(guò)點(diǎn)(,),即必過(guò)點(diǎn)(0,2.8),而給出的三個(gè)線性回歸方程中,只有①表示的直線過(guò)點(diǎn)(0,2.8),故正確的是①,故選A.
[答案] A
12、二、填空題
4.在研究氣溫和熱茶銷售杯數(shù)的關(guān)系時(shí),若求得相關(guān)指數(shù)R2≈0.85,則表明氣溫解釋了________的熱茶銷售杯數(shù)變化,而隨機(jī)誤差貢獻(xiàn)了剩余的________,所以氣溫對(duì)熱茶銷售杯數(shù)的效應(yīng)比隨機(jī)誤差的效應(yīng)大得多.
[解析] 由相關(guān)指數(shù)R2的意義可知,R2≈0.85表明氣溫解釋了85%,而隨機(jī)誤差貢獻(xiàn)了剩余的15%.
[答案] 85% 15%
5.某種商品的廣告費(fèi)支出x與銷售額y之間有如下關(guān)系:(單位:萬(wàn)元)
x
2
4
5
6
8
y
30
40
60
50
70
y與x的線性回歸方程為=6.5x+17.5,當(dāng)廣告費(fèi)支出5萬(wàn)元時(shí),殘差為_(kāi)_____
13、__.
[解析] 當(dāng)廣告費(fèi)x=5時(shí),=6.5×5+17.5=50,殘差為60-50=10.
[答案] 10
三、解答題
6.在一段時(shí)間內(nèi),某種商品的價(jià)格x(萬(wàn)元)和需求量y(t)之間的一組數(shù)據(jù)為:
價(jià)格x
1.4
1.6
1.8
2
2.2
需求量y
12
10
7
5
3
(1)畫出散點(diǎn)圖;
(2)求出y對(duì)x的線性回歸方程;
(3)如果價(jià)格定為1.9萬(wàn)元,預(yù)測(cè)需求量大約是多少.
[解] (1)散點(diǎn)圖如圖所示.
(2)采用列表的方法計(jì)算與.
=×9=1.8,
=×37=7.4,
===-11.5,
=- =7.4+11.5×1.8=28
14、.1,
所以y對(duì)x的線性回歸方程為=+x=28.1-11.5x.
(3)當(dāng)x=1.9時(shí),=28.1-11.5×1.9=6.25(t),
所以價(jià)格定為1.9萬(wàn)元時(shí),需求量大約是6.25 t.
7.已知某種商品的價(jià)格x(單位:元/件)與需求量y(單位:件)之間的關(guān)系有如下一組數(shù)據(jù):
x
14
16
18
20
22
y
12
10
7
5
3
求y對(duì)x的回歸直線方程,并說(shuō)明回歸模型擬合效果的好壞.
[解] =(14+16+18+20+22)=18,=(12+10+7+5+3)=7.4,
x=142+162+182+202+222=1660,
y=122+102+72+52+32=327,
xiyi=14×12+16×10+18×7+20×5+22×3=620,
所以===-1.15,
=7.4+1.15×18=28.1,
所以所求回歸直線方程是=-1.15x+28.1.
列出殘差表:
yi-i
0
0.3
-0.4
-0.1
0.2
yi-
4.6
2.6
-0.4
-2.4
-4.4
所以(yi-i)2=0.3,
(yi-)2=53.2,
R2=1-≈0.994,
所以回歸模型的擬合效果很好.
10