影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2020版高考數(shù)學二輪復習 專題限時集訓8 空間位置關系的判斷與證明 文

上傳人:Sc****h 文檔編號:116726349 上傳時間:2022-07-06 格式:DOC 頁數(shù):8 大?。?.90MB
收藏 版權(quán)申訴 舉報 下載
2020版高考數(shù)學二輪復習 專題限時集訓8 空間位置關系的判斷與證明 文_第1頁
第1頁 / 共8頁
2020版高考數(shù)學二輪復習 專題限時集訓8 空間位置關系的判斷與證明 文_第2頁
第2頁 / 共8頁
2020版高考數(shù)學二輪復習 專題限時集訓8 空間位置關系的判斷與證明 文_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學二輪復習 專題限時集訓8 空間位置關系的判斷與證明 文》由會員分享,可在線閱讀,更多相關《2020版高考數(shù)學二輪復習 專題限時集訓8 空間位置關系的判斷與證明 文(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題限時集訓(八) 空間位置關系的判斷與證明 [專題通關練] (建議用時:30分鐘) 1.若a,b是空間中兩條不相交的直線,則過直線b且平行于直線a的平面(  ) A.有且僅有一個 B.至少有一個 C.至多有一個 D.有無數(shù)個 B [∵a,b是空間中兩條不相交的直線.∴a,b可能平行或異面.若a,b平行,則過直線b且平行于直線a的平面有無數(shù)個;若a,b異面,在b上取一點O,過O作c∥a,則b,c確定平面α,∴a平行于α,此時過直線b且平行于直線a的平面只有一個.故選B.] 2.(2019·長沙模擬)已知正三棱柱ABC-A1B1C1的側(cè)棱長為4,底面邊長為2.若點M是線段A1C

2、的中點,則直線BM與底面ABC所成角的正切值為(  ) A.    B.    C.    D. C [過點M作MN⊥AC于N,連接BN(圖略),則∠MBN為直線BM與底面ABC所成角,由題意可知MN=2,BN=3,所以tan∠MBN==.] 3.已知α,β表示兩個不同的平面,l表示既不在α內(nèi)也不在β內(nèi)的直線,存在以下三個條件:①l⊥α;②l∥β;③α⊥β,若以其中兩個推出另一個構(gòu)成命題,則正確命題的個數(shù)為(  ) A.0 B.1 C.2 D.3 C [由①②?③、①③?②是真命題,而由②③不能得到①,故選C.] 4.如圖,在四邊形ABCD中,AD∥BC,AD=AB,∠BCD

3、=45°,∠BAD=90°.將△ADB沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐A-BCD,則在三棱錐A-BCD中,下列命題正確的是(  ) A.平面ABD⊥平面ABC B.平面ADC⊥平面BDC C.平面ABC⊥平面BDC D.平面ADC⊥平面ABC D [因為在四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,所以BD⊥CD,又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,所以CD⊥平面ABD,則CD⊥AB,又AD⊥AB,CD∩AD=D,所以AB⊥平面ADC,即平面ABC⊥平面ADC,故選D.] 5.在正方體ABCD-A1B1C1

4、D1中,E,F(xiàn)分別為棱AA1,CC1的中點,則在空間與三條直線A1D1,EF,CD都相交的直線有________條. 無數(shù) [在A1D1上任取一點P,過點P與直線EF作一個平面α(如圖所示),因CD與平面α不平行,所以它們相交,設它們交于點Q,連接PQ,則PQ與EF必然相交,即PQ為所求直線.由點P的任意性知,有無數(shù)條直線與三條直線A1D1,EF,CD都相交.] 6.(2019·銀川模擬)如圖,四面體ABCD中,CD=4,AB=2,E、F分別是AC、BD的中點,若EF⊥AB,則EF與CD所成的角等于________. 30 [如圖,取AD的中點M,連接ME、MF,則ME∥CD,MF∥AB

5、, 因為EF⊥AB,所以EF⊥MF,則∠MEF為EF與CD所成的角,又ME=2,MF=1,故∠MEF=30°.] 7.(2019·全國卷Ⅰ)已知∠ACB=90°,P為平面ABC外一點,PC=2,點P到∠ACB兩邊AC,BC的距離均為,那么P到平面ABC的距離為________.  [如圖,過點P作PO⊥平面ABC于O,則PO為P到平面ABC的距離. 再過O作OE⊥AC于E,OF⊥BC于F, 連接PC,PE,PF,則PE⊥AC,PF⊥BC. 又PE=PF=,所以OE=OF, 所以CO為∠ACB的平分線, 即∠ACO=45°. 在Rt△PEC中,PC=2,PE=,所以CE=1,

6、 所以OE=1,所以PO===.] 8.[一題多解](2019·全國卷Ⅱ)中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時期的官員獨孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學的對稱美.圖2是一個棱數(shù)為48的半正多面體,它的所有頂點都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體共有________個面,其棱長為________. 圖1   圖2 26?。? [先求面數(shù)有如下兩種方法. 法一:由“半正多面體”的結(jié)構(gòu)特征及棱數(shù)為48可知,

7、其上部分有9個面,中間部分有8個面,下部分有9個面,共有2×9+8=26(個)面. 法二:一般地,對于凸多面體,頂點數(shù)(V)+面數(shù)(F)-棱數(shù)(E)=2.(歐拉公式) 由題圖知,棱數(shù)為48的半正多面體的頂點數(shù)為24. 故由V+F-E=2,得面數(shù)F=2+E-V=2+48-24=26. 再求棱長.作中間部分的橫截面,由題意知該截面為各頂點都在邊長為1的正方形上的正八邊形ABCDEFGH,如圖,設其邊長為x,則正八邊形的邊長即為棱長. 連接AF,過H,G分別作HM⊥AF,GN⊥AF,垂足分別為M,N,則 AM=MH=NG=NF=x. 又AM+MN+NF=1,∴x+x+x=1. ∴x=

8、-1,即半正多面體的棱長為-1.] 9.(2019·永州模擬)如圖,在菱形ABCD中,AB=2,∠BCD=60°,AC與BD交于點O.以BD為折痕,將△ABD折起,使點A到達點A1的位置. (1)若A1C=,求證:平面A1BD⊥平面ABCD; (2)若A1C=2,求三棱錐A1-BCD體積. [解] (1)證明:∵在菱形ABCD中,AB=2,∠BCD=60°,AC與BD交于點O. 以BD為折痕,將△ABD折起,使點A到達點A1的位置,A1C=, ∴A1O⊥BD,OC=OA1=,∴OC2+OA=A1C2,∴OC⊥OA1, ∵OC∩BD=O,∴OA1⊥平面ABCD, ∵OA1?平面A

9、1BD,∴平面A1BD⊥平面ABCD. (2)設點A1到平面BCD的距離為d, ∵OC=OA1=,A1C=2, ∴××d=×2×,解得d=, S△BCD=×BD×OC=×2×=, ∴三棱錐A1-BCD體積V=×d×S△BCD=××=. [能力提升練] (建議用時:15分鐘) 10.如圖,在四棱錐P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°. (1)證明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,∠APD=90°,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積. [解] (1)由∠BAP=∠CDP=90°,得AB⊥AP,CD⊥PD. 由于AB

10、∥CD,故AB⊥PD,又AP∩PD=P,從而AB⊥平面PAD. 又AB?平面PAB,所以平面PAB⊥平面PAD. (2)如圖所示,在平面PAD內(nèi)作PE⊥AD,垂足為E. 由(1)知,AB⊥平面PAD,故AB⊥PE,可得PE⊥平面ABCD. 設AB=x,則由已知可得AD=x,PE=x. 故四棱錐P-ABCD的體積VP-ABCD=AB·AD·PE=x3. 由題設得x3=,故x=2. 從而PA=PD=DC=2,AD=BC=2,PB=PC=2. 可得四棱錐P -ABCD的側(cè)面積為PA·PD+PA·AB+PD·DC+BC2sin 60°=6+2. 11.如圖所示,在圓錐PO中,已知PO

11、=,⊙O的直徑AB=2,點C在上,且∠CAB=30°,D為AC的中點. (1)求證:AC⊥平面POD. (2)求直線OC和平面PAC所成角的正弦值. [解] (1)證明:連接OC.∵OA=OC,D是AC的中點,∴AC⊥OD. ∵PO⊥底面⊙O,AC?底面⊙O,∴AC⊥PO. ∵OD,PO是平面POD內(nèi)的兩條相交直線, ∴AC⊥平面POD. (2)由(1)知,AC⊥平面POD,又AC?平面PAC,∴平面POD⊥平面PAC.如圖所示,在平面POD中,過O作OH⊥PD于H,則OH⊥平面PAC,連接CH,則CH是OC在平面PAC上的射影,∴∠OCH是直線OC和平面PAC所成的角.在Rt△

12、ODA中,OD=OA×sin 30°=.在Rt△POD中,OH===. 在Rt△OHC中,sin∠OCH==. ∴直線OC和平面PAC所成的角的正弦值為. 12.(2019·遼陽二模)如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,∠ACD=45°,CD=2,△PAC是邊長為的等邊三角形,PA⊥CD. (1)證明:平面PCD⊥平面ABCD (2)在線段PB上是否存在一點M,使得PD∥平面MAC?說明理由. [解] (1)證明:取CD的中點E,連接PE,AE, ∵∠ACD=45°,CD=2,AC=, ∴AD==, ∴△ACD是等腰直角三角形,AD=AC, ∴AE⊥

13、CD, 又PA⊥CD,PA∩AE=A, ∴CD⊥平面PAE,又PE?平面PAE, ∴CD⊥PE. ∴PE==1,又AE=CD=1,PA=, ∴PE2+AE2=PA2,∴PE⊥AE, 又AE?平面ABCD,CD?平面ABCD,CD∩AE=E, ∴PE⊥平面ABCD,又PE?平面PCD, ∴平面PCD⊥平面ABCD. (2)當M為PB的中點時,PD∥平面MAC. 證明:連接BD交AC于O,連接OM, ∵四邊形ABCD是平行四邊形, ∴O是BD的中點,又M是PB的中點, ∴OM∥PD,又OM?平面MAC,PD?平面MAC, ∴PD∥平面MAC. 題號 內(nèi)容

14、 押題依據(jù) 1 異面直線所成的角 對異面直線所成角的考查,是近幾年高考一個新的重點.本題以平面圖形的翻折為載體考查異面直線所成角的求法.考查了考生的直觀想象、邏輯推理和數(shù)學運算核心素養(yǎng) 2 直線與平面平行的判定,直線與平面垂直的判定與性質(zhì),四棱錐的體積 高考對立體幾何解答題的考查多分2小問,第(1)問是空間平行、垂直關系的證明;第(2)問多涉及體、面積的計算.本題符合高考的命題規(guī)律,考查考生的直觀想象、邏輯推理、數(shù)學運算核心素養(yǎng) 【押題1】 [新題型]如圖,在邊長為2的正方形ABCD中,點E,F(xiàn)分別為BC,AD的中點,將四邊形CDFE沿EF翻折,使得平面CDFE⊥平面ABEF,

15、則BD=________,異面直線BD與CF所成角的余弦值為________.   [如圖,連接DE交FC于O,取BE的中點G,連接OG,CG,則OG∥BD且OG=BD,所以∠COG為異面直線BD與CF所成的角或其補角.因為正方形ABCD的邊長為2,則CE=BE=1,CF=DE==,所以CO=CF=.易得BE⊥平面CDFE,所以BE⊥DE,所以BD==,所以OG=BD=.易知CE⊥平面ABEF,所以CE⊥BE,又GE=BE=,所以CG==.在△COG中,由余弦定理得,cos∠COG===,所以異面直線BD與CF所成角的余弦值為.] 【押題2】 如圖,在四棱錐P-ABCD中,底面ABCD

16、是平行四邊形,BC=2AB,∠ABC=60°,PA=PB=AC,點M為AB的中點. (1)試在棱PD上找一點N,使得AN∥平面PMC; (2)若PB⊥AC,PM=,求四棱錐P-ABCD的體積. [解] (1)點N為PD的中點時AN∥平面PMC. 證明:取PD的中點N,PC的中點Q,連接AN,QN,MQ, 在△PCD中,N,Q分別是所在邊PD,PC的中點,則NQ∥CD且NQ= CD. 因為點M為AB的中點,AB∥CD,且AB=CD,所以NQ∥AM且NQ=AM. 所以四邊形AMQN是平行四邊形,所以AN∥MQ. 又AN?平面PMC,MQ?平面PMC,所以AN∥平面PMC. (2)

17、在△ABC中,BC=2AB,∠ABC=60°,設AB=a,則BC=2a, 由余弦定理得AC2=AB2+BC2-2AB·BC·cos 60°=3a2, 則BC2=AB2+AC2,由勾股定理的逆定理可得,AC⊥AB. 又PB⊥AC,PB∩AB=B,PB,AB?平面PAB,所以AC⊥平面PAB. 因為PM?平面PAB,所以AC⊥PM. 因為PA=PB,點M為AB的中點,所以PM⊥AB, 又AC∩AB=A,因此PM⊥平面ABCD. 在Rt△PAM中,AM=AB=,PA=AC=a, 所以PM===, 所以a=2,AB=2,BC=4, V四棱錐P-ABCD=×AB×BC×sin∠ABC×PM=×2×4××=, 所以四棱錐P-ABCD的體積為. - 8 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!