影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2020版高考數(shù)學二輪復習 專題限時集訓5 概率、隨機變量及其分布 理

上傳人:Sc****h 文檔編號:116726672 上傳時間:2022-07-06 格式:DOC 頁數(shù):8 大?。?.45MB
收藏 版權(quán)申訴 舉報 下載
2020版高考數(shù)學二輪復習 專題限時集訓5 概率、隨機變量及其分布 理_第1頁
第1頁 / 共8頁
2020版高考數(shù)學二輪復習 專題限時集訓5 概率、隨機變量及其分布 理_第2頁
第2頁 / 共8頁
2020版高考數(shù)學二輪復習 專題限時集訓5 概率、隨機變量及其分布 理_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學二輪復習 專題限時集訓5 概率、隨機變量及其分布 理》由會員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學二輪復習 專題限時集訓5 概率、隨機變量及其分布 理(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題限時集訓(五) 概率、隨機變量及其分布 [專題通關(guān)練] (建議用時:30分鐘) 1.袋中裝有2個紅球,3個黃球,有放回地抽取3次,每次抽取1球,則3次中恰有2次抽到黃球的概率是(  ) A.    B. C. D. D [由題意可知抽到黃球的次數(shù)ξ~B, ∴P(ξ=2)=C×=.] 2.(2019·咸陽二模)已知甲、乙、丙三人去參加某公司面試,他們被公司錄取的概率分別為,,,且三人錄取結(jié)果相互之間沒有影響,則他們?nèi)酥兄辽儆幸蝗吮讳浫〉母怕蕿?  ) A. B. C. D. B [甲、乙、丙三人去參加某公司面試,他們被公司錄取的概率分別為,,,且三個錄取結(jié)

2、果相互之間沒有影響,∴他們?nèi)酥兄辽儆幸蝗吮讳浫〉母怕蕿椋篜=1-=.故選B.] 3.(2019·鄭州二模)在如圖所示的正方形中隨機投擲10 000個點,則落入陰影部分(曲線C為正態(tài)分布N(-1,1)的密度曲線)的點的個數(shù)的估計值為(  ) (附:X~N(μ,σ2),則P(μ-σ<X≤μ+σ)=0.682 7, P(μ-2σ<X≤μ+2σ)=0.954 5) A.906 B.2 718 C.1 359 D.3 413 C [∵X~N(-1,1), ∴陰影部分的面積S=P(0﹤X≤1) =[P(-3﹤x≤1)-P(-2﹤x≤0)]=(0.954 5-0.682 7)=0.1

3、35 9, ∴落入陰影部分的點的個數(shù)的估計值為10 000×0.135 9=1 359.故選C.] 4.甲、乙二人爭奪一場圍棋比賽的冠軍,若比賽為“三局兩勝”制,甲在每局比賽中獲勝的概率均為,且各局比賽結(jié)果相互獨立,則在甲獲得冠軍的情況下,比賽進行了三局的概率為(  ) A.        B. C. D. B [由題意,甲獲得冠軍的概率為×+××+××=,其中比賽進行了3局的概率為××+××=, ∴所求概率為÷=,故選B.] 5.(2019·巢湖市一模)某次考試共有12個選擇題,每個選擇題的分值為5分,每個選擇題四個選項且只有一個選項是正確的,A學生對12個選擇題中每個題的

4、四個選擇項都沒有把握,最后選擇題的得分為X分,B學生對12個選擇題中每個題的四個選項都能判斷其中有一個選項是錯誤的,對其它三個選項都沒有把握,選擇題的得分為Y分,則D(Y)-D(X)的值為(  ) A. B. C. D. A [設A學生答對題的個數(shù)為m,得分5m,則m~B,D(m)=12××=, ∴D(X)=25×=. 設B學生答對題的個數(shù)為n,得分5n,則n~B, D(n)=12××=,∴D(Y)=25×=. ∴D(Y)-D(X)=-=.故選A.] 6.已知隨機變量X服從正態(tài)分布N(2,σ2),且P(0≤X≤2)=0.3,則P(X>4)=________. 0.2 

5、[由正態(tài)分布的特征可知 P(0≤X≤2)=P(2≤X≤4)=0.3. 又P(X≥2)=0.5,∴P(X>4)=0.5-0.3=0.2.] 7.[易錯題]某種子每粒發(fā)芽的概率都為0.9,現(xiàn)播種了1 000粒,對于沒有發(fā)芽的種子,每粒需要再補種2粒,補種的種子數(shù)記為X,則X的數(shù)學期望為________. 200 [將“沒有發(fā)芽的種子數(shù)”記為ξ,則ξ=1,2,3,…,1 000,由題意可知ξ~B(1 000,0.1),所以E(ξ)=1 000×0.1=100,又因為X=2ξ,所以E(X)=2E(ξ)=200.] 8.甲、乙、丙三人到三個景點旅游,每人只去一個景點,設事件A為“三個人去的景點

6、不相同”,B為“甲獨自去一個景點”,則概率P(A|B)等于________.  [由題意可知,n(B)=C22=12,n(AB)=A=6, 所以P(A|B)===.] [能力提升練] (建議用時:30分鐘) 9.根據(jù)以往的數(shù)據(jù)統(tǒng)計,某支深受廣大球迷喜歡的足球隊中,乙球員能夠勝任前鋒、中場、后衛(wèi)及守門員四個位置,且出場率分別為0.2,0.5,0.2,0.1,當出任前鋒、中場、后衛(wèi)及守門員時,球隊輸球的概率依次為0.4,0.2,0.6,0.2.則 (1)當他參加比賽時,求球隊某場比賽輸球的概率; (2)當他參加比賽時,在球隊輸了某場比賽的條件下,求乙球員擔當前鋒的概率; (3)如果

7、你是教練員,應用概率統(tǒng)計的相關(guān)知識分析,如何安排乙球員能使贏球場次更多? [解] 設A1表示“乙球員擔當前鋒”,A2表示“乙球員擔當中場”,A3表示“乙球員擔當后衛(wèi)”,A4表示“乙球員擔當守門員”,B表示“球隊某場比賽輸球”. (1)P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)+P(A4)P(B|A4)=0.2×0.4+0.5×0.2+0.2×0.6+0.1×0.2=0.32. (2)由(1)知,P(B)=0.32, 所以P(A1|B)===0.25. (3)因為P(A1|B)∶P(A2|B)∶P(A3|B)∶P(A4|B)=0.08∶0.1

8、0∶0.12∶0.02=4∶5∶6∶1, 所以多安排乙球員擔當守門員,能夠贏球場次更多. 10.為了預防某種流感擴散,某校醫(yī)務室采取積極的處理方式,對感染者進行短暫隔離直到康復.假設某班級已知6位同學中有1位同學被感染,需要通過化驗血液來確定被感染的同學,血液化驗結(jié)果呈陽性即被感染,呈陰性即未被感染.下面是兩種化驗方案. 方案甲:逐個化驗,直到能確定被感染的同學為止. 方案乙:先任取3個同學,將他們的血液混在一起化驗,若結(jié)果呈陽性則表明被感染同學為這3位中的1位,后再逐個化驗,直到能確定被感染的同學為止;若結(jié)果呈陰性,則在另外3位同學中逐個檢測. (1)求方案甲所需化驗次數(shù)等于方案乙

9、所需化驗次數(shù)的概率; (2)η表示方案甲所需化驗次數(shù),ξ表示方案乙所需化驗次數(shù),假設每次化驗的費用都相同,請從經(jīng)濟角度考慮哪種化驗的方案最佳. [解] 設Ai(i=1,2,3,4,5)表示方案甲所需化驗次數(shù)為i次;Bj(j=2,3)表示方案乙所需化驗的次數(shù)為j次,方案甲與方案乙相互獨立. (1)P(A1)=P(A2)=P(A3)=P(A4)=,P(A5)=, P(B2)=+=,P(B3)=1-P(B2)=, 用事件D表示方案甲所需化驗次數(shù)等于方案乙所需化驗次數(shù), 則P(D)=P(A2B2+A3B3)=P(A2)P(B2)+P(A3)P(B3)=×+×=. (2)η的可能取值為1,

10、2,3,4,5.ξ的可能取值為2,3. 由(1)知P(η=1)=P(η=2)=P(η=3)=P(η=4)=,P(η=5)=, 所以E(η)=1×+2×+3×+4×+5×=,P(ξ=2)=P(B2)=,P(ξ=3)=P(B3)=,所以E(ξ)=2×+3×=. 因為E(ξ)<E(η),所以從經(jīng)濟角度考慮方案乙最佳. 11.(2019·昆明模擬)為了解甲、乙兩種產(chǎn)品的質(zhì)量,從中分別隨機抽取了10件樣品,測量產(chǎn)品中某種元素的含量(單位:毫克),如圖所示是測量數(shù)據(jù)的莖葉圖.規(guī)定:當產(chǎn)品中的此種元素的含量不小于18毫克時,該產(chǎn)品為優(yōu)等品. (1)試用樣品數(shù)據(jù)估計甲、乙兩種產(chǎn)品的優(yōu)等品率;

11、(2)從乙產(chǎn)品抽取的10件樣品中隨機抽取3件,求抽到的3件樣品中優(yōu)等品數(shù)ξ的分布列及其數(shù)學期望E(ξ); (3)從甲產(chǎn)品抽取的10件樣品中有放回地隨機抽取3件,也從乙產(chǎn)品抽取的10件樣品中有放回地隨機抽取3件,抽到的優(yōu)等品中,記“甲產(chǎn)品恰比乙產(chǎn)品多2件”為事件C,求事件C的概率. [解](1)從甲產(chǎn)品抽取的10件樣品中優(yōu)等品有4件,優(yōu)等品率為=,從乙產(chǎn)品抽取的10件樣品中優(yōu)等品有5件,優(yōu)等品率為=. 故甲、乙兩種產(chǎn)品的優(yōu)等品率分別為,. (2)ξ的所有可能取值為0,1,2,3. P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==. 所以ξ的分布列為 ξ 0

12、 1 2 3 P E(ξ)=0×+1×+2×+3×=. (3)抽到的優(yōu)等品中,甲產(chǎn)品恰比乙產(chǎn)品多2件包括兩種情況:“抽到的優(yōu)等品數(shù)甲產(chǎn)品2件且乙產(chǎn)品0件”,“抽到的優(yōu)等品數(shù)甲產(chǎn)品3件且乙產(chǎn)品1件”,分別記為事件A,B,P(A)=C×C×=, P(B)=C×C=, 故抽到的優(yōu)等品中甲產(chǎn)品恰比乙產(chǎn)品多2件的概率為P(C)=P(A)+P(B)=+=. 12.春節(jié)期間某商店出售某種海鮮禮盒,假設每天該禮盒的需求量在{11,12,…,30}范圍內(nèi)等可能取值,該禮盒的進貨量也在{11,12,…,30}范圍內(nèi)取值(每天進1次貨).商店每銷售1盒禮盒可獲利50元;若供大于求,

13、剩余的削價處理,每處理1盒禮盒虧損10元;若供不應求,可從其他商店調(diào)撥,銷售1盒禮盒可獲利30元.設該禮盒每天的需求量為x盒,進貨量為a盒,商店的日利潤為y元. (1)求商店的日利潤y關(guān)于需求量x的函數(shù)表達式; (2)試計算進貨量a為多少時,商店日利潤的期望值最大?并求出日利潤期望值的最大值. [解](1)由題意得商店的日利潤y關(guān)于需求量x的函數(shù)表達式為y= 化簡得y= (2)日利潤y的分布列為 y 60×11-10a 60×12-10a … 60×(a-1)-10a 30a+20a p … y 30(a+1)+20a … 30×29+20

14、a 30×30+20a p … 日利潤y的數(shù)學期望為 E(y)=·{(60×11-10a)+(60×12-10a)+…+[60×(a-1)-10a]}+·{(30a+20a)+[30(a+1)+20a]+…+(30×30+20a)} =+30×+20a(31-a) =-a2+a+, 結(jié)合二次函數(shù)的知識, 當a=24時,日利潤y的數(shù)學期望最大,最大值為958.5元. 題號 內(nèi)容 押題依據(jù) 1 相互獨立事件的概率 依據(jù)概率知識對生產(chǎn)實際作出指導,體現(xiàn)數(shù)學應用的能力 2 期望、方差、決策性問題、條件概率、二項分布 高考熱點,結(jié)合二項分布考查離散型隨

15、機變量的分布列、期望并對實際問題作出決策 【押題1】 三個元件T1,T2,T3正常工作的概率分別為,,,將T2,T3兩個元件并聯(lián)后再和T1串聯(lián)接入電路,如圖所示,則電路不發(fā)生故障的概率為________.  [三個元件T1,T2,T3正常工作的概率分別為,,,將T2,T3兩個元件并聯(lián)后再和T1串聯(lián)接入電路,則電路不發(fā)生故障的概率為: p=×=.] 【押題2】 某企業(yè)打算處理一批產(chǎn)品,這些產(chǎn)品每箱100件,以箱為單位銷售.已知這批產(chǎn)品中每箱出現(xiàn)的廢品率只有兩種可能10%或者20%,兩種可能對應的概率均為0.5.假設該產(chǎn)品正品每件市場價格為100元,廢品不值錢.現(xiàn)處理價格為每箱8 40

16、0元,遇到廢品不予更換.以一箱產(chǎn)品中正品的價格期望值作為決策依據(jù). (1)在不開箱檢驗的情況下,判斷是否可以購買; (2)現(xiàn)允許開箱,有放回地隨機從一箱中抽取2件產(chǎn)品進行檢驗. ①若此箱出現(xiàn)的廢品率為20%,記抽到的廢品數(shù)為X,求X的分布列和數(shù)學期望; ②若已發(fā)現(xiàn)在抽取檢驗的2件產(chǎn)品中,其中恰有一件是廢品,判斷是否可以購買. [解](1)在不開箱檢驗的情況下,一箱產(chǎn)品中正品的價格期望值為: E(ξ)=100×(1-0.2)×100×0.5+100×(1-0.1)×100×0.5=8 500>8 400, ∴在不開箱檢驗的情況下,可以購買. (2)①X的可能取值為0,1,2,

17、P(X=0)=C×0.20×0.82=0.64, P(X=1)=C×0.21×0.81=0.32, P(X=2)=C×0.80×0.22=0.04, ∴X的分布列為: X 0 1 2 P 0.64 0.32 0.04 E(X)=0×0.64+1×0.32+2×0.04=0.4. ②設事件A:發(fā)現(xiàn)在抽取檢驗的2件產(chǎn)品中,其中恰有一件是廢品, 則P(A)=C×0.2×0.8×0.5+C×0.1×0.9×0.5=0.25, 一箱產(chǎn)品中,設正品的價格的期望值為η,則η=8 000,9 000, 事件B1:抽取的廢品率為20%的一箱,則P(η=8 000)=P(B1|A)===0.64, 事件B2:抽取的廢品率為10%的一箱,則P(η=9 000)=P(B2|A)===0.36, ∴E(η)=8 000×0.64+9 000×0.36=8 360<8 400, ∴已發(fā)現(xiàn)在抽取檢驗的2件產(chǎn)品中,其中恰有一件是廢品,不可以購買. - 8 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!