影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第九章 平面解析幾何 7 第6講 雙曲線練習(xí) 理(含解析)

上傳人:Sc****h 文檔編號:116799764 上傳時間:2022-07-06 格式:DOC 頁數(shù):11 大小:2.52MB
收藏 版權(quán)申訴 舉報 下載
2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第九章 平面解析幾何 7 第6講 雙曲線練習(xí) 理(含解析)_第1頁
第1頁 / 共11頁
2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第九章 平面解析幾何 7 第6講 雙曲線練習(xí) 理(含解析)_第2頁
第2頁 / 共11頁
2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第九章 平面解析幾何 7 第6講 雙曲線練習(xí) 理(含解析)_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第九章 平面解析幾何 7 第6講 雙曲線練習(xí) 理(含解析)》由會員分享,可在線閱讀,更多相關(guān)《2020高考數(shù)學(xué)大一輪復(fù)習(xí) 第九章 平面解析幾何 7 第6講 雙曲線練習(xí) 理(含解析)(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第6講 雙曲線 [基礎(chǔ)題組練] 1.“k<9”是“方程+=1表示雙曲線”的(  ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 解析:選A.因為方程+=1表示雙曲線,所以(25-k)(k-9)<0,所以k<9或k>25, 所以“k<9”是“方程+=1表示雙曲線”的充分不必要條件,故選A. 2.(2018·高考全國卷Ⅱ)雙曲線-=1(a>0,b>0)的離心率為,則其漸近線方程為(  ) A.y=±x     B.y=±x C.y=±x D.y=±x 解析:選A.法一:由題意知,e==,所以c=a,所以b==a,所以=,所以該雙

2、曲線的漸近線方程為y=±x=±x,故選A. 法二:由e===,得=,所以該雙曲線的漸近線方程為y=±x=±x,故選A. 3.(一題多解)已知方程-=1表示雙曲線,且該雙曲線兩焦點間的距離為4,則n的取值范圍是(  ) A.(-1,3)         B.(-1,) C.(0,3) D.(0,) 解析:選A.法一:由題意可知:c2=(m2+n)+(3m2-n)=4m2,其中c為半焦距, 所以2c=2×|2m|=4,所以|m|=1, 因為方程-=1表示雙曲線, 所以(m2+n)·(3m2-n)>0, 所以-m2

3、表示雙曲線,且焦距為4, 所以?、? 或 ② 由①得m2=1,n∈(-1,3).②無解.故選A. 4.若雙曲線C1:-=1與C2:-=1(a>0,b>0)的漸近線相同,且雙曲線C2的焦距為4,則b=(  ) A.2            B.4 C.6 D.8 解析:選B.由題意得,=2?b=2a,C2的焦距2c=4?c==2?b=4,故選B. 5.(一題多解)(2019·開封模擬)過雙曲線-=1(a>0,b>0)的左焦點F(-c,0)作圓O:x2+y2=a2的切線,切點為E,延長FE交雙曲線于點P,若E為線段FP的中點,則雙曲線的離心率為(  ) A. B. C

4、.+1 D. 解析:選A.法一:如圖所示,不妨設(shè)E在x軸上方,F(xiàn)′為雙曲線的右焦點,連接OE,PF′, 因為PF是圓O的切線,所以O(shè)E⊥PE,又E,O分別為PF,F(xiàn)F′的中點,所以|OE|=|PF′|,又|OE|=a,所以|PF′|=2a,根據(jù)雙曲線的性質(zhì),|PF|-|PF′|=2a,所以|PF|=4a,所以|EF|=2a,在Rt△OEF中,|OE|2+|EF|2=|OF|2,即a2+4a2=c2,所以e=,故選A. 法二:連接OE,因為|OF|=c,|OE|=a,OE⊥EF,所以|EF|=b,設(shè)F′為雙曲線的右焦點,連接PF′,因為O,E分別為線段FF′,F(xiàn)P的中點,所以|PF|=

5、2b,|PF′|=2a,所以|PF|-|PF′|=2a,所以b=2a,所以e==. 6.(2018·高考全國卷Ⅰ)已知雙曲線C:-y2=1,O為坐標(biāo)原點,F(xiàn)為C的右焦點,過F的直線與C的兩條漸近線的交點分別為M,N.若△OMN為直角三角形,則|MN|=(  ) A. B.3 C.2 D.4 解析:選B.因為雙曲線-y2=1的漸近線方程為y=±x,所以∠MON=60°.不妨設(shè)過點F的直線與直線y=x交于點M,由△OMN為直角三角形,不妨設(shè)∠OMN=90°,則∠MFO=60°,又直線MN過點F(2,0),所以直線MN的方程為y=-(x-2), 由得所以M,所以|OM|==,所以|

6、MN|=|OM|=3,故選B. 7.(2019·遼寧五校協(xié)作體聯(lián)合模擬)在平面直角坐標(biāo)系xOy中,已知雙曲線C:-=1(a>0,b>0)的離心率為,從雙曲線C的右焦點F引漸近線的垂線,垂足為A,若△AFO的面積為1,則雙曲線C的方程為(  ) A.-=1 B.-y2=1 C.-=1 D.x2-=1 解析:選D.因為雙曲線C的右焦點F到漸近線的距離|FA|=b,|OA|=a,所以ab=2,又雙曲線C的離心率為,所以 =,即b2=4a2,解得a2=1,b2=4,所以雙曲線C的方程為x2-=1,故選D. 8.(2019·河北邯鄲聯(lián)考)如圖,F(xiàn)1,F(xiàn)2是雙曲線C:-=1(a>0,b>

7、0)的左、右兩個焦點,若直線y=x與雙曲線C交于P,Q兩點,且四邊形PF1QF2為矩形,則雙曲線的離心率為(  ) A.2+ B. C.2+ D. 解析:選D.由題意可得,矩形的對角線長相等,將直線y=x代入雙曲線C方程,可得x=±,所以·=c,所以2a2b2=c2(b2-a2),即2(e2-1)=e4-2e2,所以e4-4e2+2=0.因為e>1,所以e2=2+,所以e=,故選D. 9.(2019·貴陽模擬)過雙曲線C:-=1(a>0,b>0)的右焦點F作圓x2+y2=a2的切線FM(切點為M),交y軸于點P,若=2,則雙曲線的離心率為(  ) A. B. C.

8、 D.2 解析:選B.設(shè)P(0,3m),由=2,可得點M的坐標(biāo)為,因為OM⊥PF,所以·=-1,所以m2=c2,所以M,由|OM|2+|MF|2=|OF|2,|OM|=a,|OF|=c得,a2++=c2,a2=c2,所以e==,故選B. 10.(2019·石家莊模擬)雙曲線-=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,過F1作傾斜角為30°的直線,與y軸和雙曲線的右支分別交于A,B兩點,若點A平分線段F1B,則該雙曲線的離心率是(  ) A. B. C.2 D. 解析:選A.由題意可知F1(-c,0),設(shè)A(0,y0),因為A是F1B的中點,所以點B的橫坐標(biāo)為c,又

9、點B在雙曲線的右支上,所以B,因為直線F1B的傾斜角為30°,所以=,化簡整理得=,又b2=c2-a2,所以3c2-3a2-2ac=0,兩邊同時除以a2得3e2-2e-3=0,解得e=或e=-(舍去),故選A. 11.已知M(x0,y0)是雙曲線C:-y2=1上的一點,F(xiàn)1,F(xiàn)2是雙曲線C的兩個焦點.若·<0,則y0的取值范圍是(  ) A. B. C. D. 解析:選A.由題意知a=,b=1,c=, 設(shè)F1(-,0),F(xiàn)2(,0), 則=(--x0,-y0),=(-x0,-y0). 因為·<0, 所以(--x0)(-x0)+y<0, 即x-3+y<0. 因為點M(

10、x0,y0)在雙曲線C上, 所以-y=1,即x=2+2y, 所以2+2y-3+y<0,所以-0,b>0)的左焦點且垂直于x軸的直線與雙曲線交于A,B兩點,D為虛軸上的一個端點,且△ABD為鈍角三角形,則此雙曲線離心率的取值范圍為(  ) A.(1,) B.(,) C.(,2) D.(1,)∪(,+∞) 解析:選D.設(shè)雙曲線:-=1(a>0,b>0)的左焦點為F1(-c,0), 令x=-c,可得y=±,可設(shè)A,B. 又設(shè)D(0,b),可得=. =,=. 由△ABD為鈍角三角形,可得∠DAB為鈍角或∠ADB為鈍

11、角. 當(dāng)∠DAB為鈍角時,可得·<0,即為0-·<0,化為a>b,即有a2>b2=c2-a2.可得c2<2a2,即e=<.又e>1,可得10,由e=, 可得e4-4e2+2>0.又e>1,可得e>. 綜上可得,e的范圍為(1,)∪(,+∞).故選D. 13.若雙曲線-=1(a>0,b>0)的一條漸近線經(jīng)過點(3,-4),則此雙曲線的離心率為________. 解析:由雙曲線的漸近線過點(3,-4)知=, 所以=.又b2=c2-a2,所以=, 即e2-1=,所以e2=,所以e=. 答案: 14

12、.雙曲線-=1(a>0,b>0)的漸近線為正方形OABC的邊OA,OC所在的直線,點B為該雙曲線的焦點.若正方形OABC的邊長為2,則a=________. 解析:雙曲線-=1的漸近線方程為y=±x,由已知可得兩條漸近線方程互相垂直,由雙曲線的對稱性可得=1.又正方形OABC的邊長為2,所以c=2,所以a2+b2=c2=(2)2,解得a=2. 答案:2 15.(2019·武漢調(diào)研)已知點P在雙曲線-=1(a>0,b>0)上,PF⊥x軸(其中F為雙曲線的右焦點),點P到該雙曲線的兩條漸近線的距離之比為,則該雙曲線的離心率為________. 解析:由題意知F(c,0),由PF⊥x軸,不妨

13、設(shè)點P在第一象限,則P,雙曲線漸近線的方程為bx±ay=0,由題意,得=,解得c=2b,又c2=a2+b2,所以a=b,所以雙曲線的離心率e===. 答案: 16.(2019·長春監(jiān)測)已知O為坐標(biāo)原點,設(shè)F1,F(xiàn)2分別是雙曲線x2-y2=1的左、右焦點,P為雙曲線左支上任一點,過點F1作∠F1PF2的平分線的垂線,垂足為H,則|OH|=________. 解析:如圖所示,延長F1H交PF2于點Q,由PH為∠F1PF2的平分線及PH⊥F1Q,可知|PF1|=|PQ|,根據(jù)雙曲線的定義,得|PF2|-|PF1|=2,從而|QF2|=2,在△F1QF2中,易知OH為中位線,故|OH|=1.

14、 答案:1 [綜合題組練] 1.(一題多解)已知雙曲線C:-=1 (a>0,b>0)的一條漸近線方程為y=x,且與橢圓+=1有公共焦點,則C的方程為(  ) A.-=1       B.-=1 C.-=1 D.-=1 解析:選B.法一:由雙曲線的漸近線方程可設(shè)雙曲線方程為-=k(k>0),即-=1,因為雙曲線與橢圓+=1有公共焦點,所以4k+5k=12-3,解得k=1,故雙曲線C的方程為-=1.故選B. 法二:因為橢圓+=1的焦點為(±3,0),雙曲線與橢圓+=1有公共焦點,所以a2+b2=(±3)2=9①,因為雙曲線的一條漸近線為y=x,所以=②,聯(lián)立①②可解得a2=

15、4,b2=5.所以雙曲線C的方程為-=1. 2.(2019·鄭州模擬)已知雙曲線C:-=1(a>b>0)的兩條漸近線與圓O:x2+y2=5交于M,N,P,Q四點,若四邊形MNPQ的面積為8,則雙曲線C的漸近線方程為(  ) A.y=±x B.y=±x C.y=±x D.y=±x 解析:選B.以原點為圓心,半徑長為的圓的方程為x2+y2=5,雙曲線的兩條漸近線方程為y=±x,不妨設(shè)M, 因為四邊形MNPQ的面積為8,所以4x·x=8, 所以x2=2, 將M代入x2+y2=5,可得x2+x2=5, 所以+=5,a>b>0, 解得=,故選B. 3.(2019·石家莊模擬)

16、以橢圓+=1的頂點為焦點,焦點為頂點的雙曲線C,其左、右焦點分別是F1,F(xiàn)2.已知點M的坐標(biāo)為(2,1),雙曲線C上的點P(x0,y0)(x0>0,y0>0)滿足=,則S△PMF1-S△PMF2=(  ) A.2 B.4 C.1 D.-1 解析:選A.由題意,知雙曲線方程為-=1,|PF1|-|PF2|=4,由=,可得=,即F1M平分∠PF1F2. 又結(jié)合平面幾何知識可得,△F1PF2的內(nèi)心在直線x=2上,所以點M(2,1)就是△F1PF2的內(nèi)心. 故S△PMF1-S△PMF2=×(|PF1|-|PF2|)×1=×4×1=2. 4.(2019·高考全國卷Ⅰ)已知雙曲線C:-

17、=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,過F1的直線與C的兩條漸近線分別交于A,B兩點,若=,·=0,則C的離心率為________. 解析:通解:因為·=0,所以F1B⊥F2B,如圖. 所以|OF1|=|OB|,所以∠BF1O=∠F1BO,所以∠BOF2=2∠BF1O.因為=,所以點A為F1B的中點,又點O為F1F2的中點,所以O(shè)A∥BF2,所以F1B⊥OA,因為直線OA,OB為雙曲線C的兩條漸近線,所以tan ∠BF1O=,tan ∠BOF2=.因為tan ∠BOF2=tan(2∠BF1O),所以=,所以b2=3a2,所以c2-a2=3a2,即2a=c,所以雙曲線的離心

18、率e==2. 優(yōu)解:因為·=0,所以F1B⊥F2B,在Rt△F1BF2 中,|OB|=|OF2|,所以∠OBF2=∠OF2B,又=,所以A為F1B的中點,所以O(shè)A∥F2B,所以∠F1OA=∠OF2B.又∠F1OA=∠BOF2,所以△OBF2為等邊三角形.由F2(c,0)可得B,因為點B在直線y=x上,所以c=·,所以=,所以e==2. 答案:2 5.設(shè)雙曲線-=1的兩個焦點分別為F1,F(xiàn)2,離心率為2. (1)若A,B分別為此雙曲線的漸近線l1,l2上的動點,且2|AB|=5|F1F2|,求線段AB的中點M的軌跡方程,并說明軌跡是什么曲線; (2)過點N(1,0)能否作出直線l,使l

19、交雙曲線于P,Q兩點,且·=0,若存在,求出直線l的方程;若不存在,說明理由. 解:(1)因為e=2,所以c2=4a2, 因為c2=a2+3,所以a=1,c=2, 所以雙曲線方程為y2-=1,漸近線方程為y=±x; 設(shè)A(x1,y1),B(x2,y2),AB的中點M(x,y), 因為2|AB|=5|F1F2|, 所以|AB|=|F1F2|=10, 所以=10, 因為y1=x1,y2=-x2,2x=x1+x2,2y=y(tǒng)1+y2, 所以y1+y2=(x1-x2),y1-y2=(x1+x2), 所以=10, 所以3(2y)2+(2x)2=100, 即+=1, 則M的軌跡是中心在原點,焦點在x軸上,長軸長為10,短軸長為的橢圓. (2)假設(shè)存在滿足條件的直線l. 設(shè)l:y=k(x-1),l與雙曲線交于P(x1,y1),Q(x2,y2), 因為·=0, 所以x1x2+y1y2=0, 所以x1x2+k2(x1-1)(x2-1)=0, 所以x1x2+k2[x1x2-(x1+x2)+1]=0,① 因為,可得(3k2-1)x2-6k2x+3k2-3=0, 所以x1+x2=,x1x2=,② 將②代入①得k2+3=0, 所以k不存在,所以假設(shè)不成立,即不存在滿足條件的直線l. - 11 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!