《(江蘇專用)2020版高考數(shù)學(xué)一輪復(fù)習(xí) 加練半小時 專題9 平面解析幾何 第73練 拋物線 文(含解析)》由會員分享,可在線閱讀,更多相關(guān)《(江蘇專用)2020版高考數(shù)學(xué)一輪復(fù)習(xí) 加練半小時 專題9 平面解析幾何 第73練 拋物線 文(含解析)(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第73練 拋物線
[基礎(chǔ)保分練]
1.(2018·無錫模擬)若拋物線y2=2px(p>0)上的點A(2,m)到焦點的距離為6,則p=________.
2.已知在平面直角坐標(biāo)系xOy中,拋物線x2=2y的焦點為F,M(3,5),點Q在拋物線上,則MQ+QF的最小值為________.
3.(2019·淮安質(zhì)檢)若定義圖形與圖形之間的距離為一個圖形上的任意一點與另一個圖形上的任意一點的距離中的最小者,則直線x+y+5=0與拋物線y2=2x的距離等于________.
4.已知M是拋物線C:y2=2px(p>0)上一點,F(xiàn)是拋物線C的焦點,若MF=p,K是拋物線C的準線與x
2、軸的交點,則∠MKF=________.
5.已知拋物線y2=8x的焦點為F,過F的直線交拋物線于A,B兩點,且=2,則AF=________.
6.已知拋物線C:y2=2px(p>0)的焦點為F,準線l與x軸的交點為A,P是拋物線C上的點,且PF⊥x軸.若以AF為直徑的圓截直線AP所得的弦長為2,則實數(shù)p的值為________.
7.已知拋物線y2=2px(p>0)的焦點為F,M為拋物線上一點,若△OFM的外接圓與拋物線的準線相切(O為坐標(biāo)原點),且外接圓的面積為9π,則p=________.
8.以拋物線C的頂點為圓心的圓交C于A,B兩點,交C的準線于D,E兩點.已
3、知AB=4,DE=2,則C的焦點到準線的距離為________.
9.已知拋物線y2=4x,過焦點F的直線與拋物線交于A,B兩點,過A,B分別作y軸的垂線,垂足分別為C,D,則AC+BD的最小值為________.
10.已知拋物線C:y2=2px(p>0)的焦點為F,過點F的直線與拋物線C相交于點M(點M位于第一象限),與它的準線相交于點N,且點N的縱坐標(biāo)為4,F(xiàn)M∶MN=1∶3,則實數(shù)p=________.
[能力提升練]
1.汽車前燈反射鏡與軸截面的交線是拋物線的一部分,燈口所在的圓面與反射鏡的軸垂直,燈泡位于拋物線焦點處,已知燈口的直徑是24cm,燈深10cm,那么
4、燈泡與反射鏡頂點(即截得拋物線頂點)間的距離是________cm.
2.已知直線l1:4x-3y+6=0和直線l2:x=-1,拋物線y2=4x上一動點P到直線l1和直線l2的距離之和的最小值是________.
3.已知拋物線C:y2=2px(p>2)的焦點為F,準線為l,過點F斜率為的直線l′與拋物線C交于點M(M在x軸的上方),過M作MN⊥l于點N,連結(jié)NF交拋物線C于點Q,則=________.
4.過拋物線y2=2px(p>0)的焦點F,斜率為的直線交拋物線于A,B兩點,若=λ(λ>1),則λ的值為________.
5.(2018·蘇州模擬)拋物線y2=2p
5、x(p>0)的焦點為F,A,B為拋物線上的兩點,以AB為直徑的圓過點F,過AB的中點M作拋物線的準線的垂線MN,垂足為N,則的最大值為________.
6.設(shè)拋物線y2=4x的焦點為F,過F的直線l交拋物線于A,B兩點,過AB的中點M作y軸的垂線與拋物線在第一象限內(nèi)交于點P,若PF=,則直線l的方程為________________.
答案精析
基礎(chǔ)保分練
1.8 2. 3. 4.45° 5.6 6.2
7.4
8.4
解析 不妨設(shè)拋物線C:y2=2px(p>0),則圓的方程可設(shè)為x2+y2=r2(r>0),如圖,
又可設(shè)A(x0,2),
D,
點A(x0,2
6、)在拋物線y2=2px上,∴8=2px0,①
點A(x0,2)在圓x2+y2=r2上,
∴x+8=r2,②
點D在圓x2+y2=r2上,
∴5+2=r2,③
聯(lián)立①②③,解得p=4,即C的焦點到準線的距離為p=4.
9.2
10.
解析 設(shè)準線與x軸交于點A,過點M作MB⊥AN,垂足為B.
設(shè)MN=3m,F(xiàn)M=BM=m,
由題意得△MNB∽△FNA,
∴=,
∴=,∴p=.
能力提升練
1.3.6
解析 取反射鏡的軸即拋物線的對稱軸為x軸,拋物線的頂點為坐標(biāo)原點,建立平面直角坐標(biāo)系xOy,如圖所示.
因為燈口直徑AB=24,燈深OP=10,
所以點A的坐標(biāo)
7、是(10,12).
設(shè)拋物線的方程為y2=2px(p>0),
由點A(10,12)在拋物線上,
得122=2p×10,所以p=7.2.
所以拋物線的焦點F的坐標(biāo)為(3.6,0).
因此燈泡與反射鏡頂點間的距離是3.6cm.
2.2
3.2
解析 由拋物線定義可得MF=MN,
又斜率為的直線l′的傾斜角為,MN⊥l,
所以∠NMF=,即△MNF為正三角形,
作QQ′⊥l,則∠NQQ′=,
===2.
4.4
解析 設(shè)A(x1,y1),B(x2,y2),
拋物線焦點坐標(biāo)為F,
則=,
=.
由=λ,得
設(shè)直線AB的方程為x=y(tǒng)+.
聯(lián)立
整理得y2-py-
8、p2=0,
∴y1=2p,y2=-p,∴-2p=-p,∴λ=4.
5.
解析 由拋物線定義,
得=≤
=,
即的最大值為.
6.x-y-=0
解析 ∵拋物線方程為y2=4x,
∴拋物線焦點為
F(1,0),準線為l:x=-1,
設(shè)A(x1,y1),
B(x2,y2),
∵P在第一象限,
∴直線AB的斜率k>0,
設(shè)直線AB的方程為y=k(x-1),
代入拋物線方程消去y,
得k2x2-(2k2+4)x+k2=0,
x1,2=,
∴x1+x2=,x1x2=1,
∵過AB的中點M作準線的垂線與拋物線交于點P,
設(shè)P點的坐標(biāo)為(x0,y0),
可得y0=(y1+y2),
∵y1=k(x1-1),y2=k(x2-1),
∴y1+y2=k(x1+x2)-2k=k·-2k=,
得到y(tǒng)0=,∴x0=,
可得P,
∵PF=,∴=,解得k2=2,
∴k=,直線方程為y=(x-1),
即x-y-=0,
故答案為x-y-=0.
6