影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

(課標通用版)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第九章 平面解析幾何 第4講 直線與圓、圓與圓的位置關(guān)系檢測 文

上傳人:Sc****h 文檔編號:120412879 上傳時間:2022-07-17 格式:DOC 頁數(shù):5 大?。?MB
收藏 版權(quán)申訴 舉報 下載
(課標通用版)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第九章 平面解析幾何 第4講 直線與圓、圓與圓的位置關(guān)系檢測 文_第1頁
第1頁 / 共5頁
(課標通用版)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第九章 平面解析幾何 第4講 直線與圓、圓與圓的位置關(guān)系檢測 文_第2頁
第2頁 / 共5頁
(課標通用版)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第九章 平面解析幾何 第4講 直線與圓、圓與圓的位置關(guān)系檢測 文_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(課標通用版)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第九章 平面解析幾何 第4講 直線與圓、圓與圓的位置關(guān)系檢測 文》由會員分享,可在線閱讀,更多相關(guān)《(課標通用版)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第九章 平面解析幾何 第4講 直線與圓、圓與圓的位置關(guān)系檢測 文(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第4講 直線與圓、圓與圓的位置關(guān)系 [基礎(chǔ)題組練] 1.(2019·陜西榆林二校聯(lián)考)圓x2+y2+4x-2y+a=0截直線x+y-3=0所得弦長為2,則實數(shù)a等于(  ) A.2     B.-2 C.4 D.-4 解析:選D.由題知,圓的標準方程為(x+2)2+(y-1)2=5-a,所以圓心為(-2,1),半徑為,又圓心到直線的距離為=2,所以2=2,解得a=-4. 2.已知圓C:x2+y2-2x-2my+m2-3=0關(guān)于直線l:x-y+1=0對稱,則直線x=-1與圓C的位置關(guān)系是(  ) A.相切 B.相交 C.相離 D.不能確定 解析:選A.由已知得C:(x-1)2

2、+(y-m)2=4,即圓心C(1,m),半徑r=2,因為圓C關(guān)于直線l:x-y+1=0對稱,所以圓心(1,m)在直線l:x-y+1=0上,所以m=2.由圓心C(1,2)到直線x=-1的距離d=1+1=2=r知,直線x=-1與圓C相切.故選A. 3.已知圓O1的方程為x2+y2=4,圓O2的方程為(x-a)2+y2=1,如果這兩個圓有且只有一個公共點,那么a的所有取值構(gòu)成的集合是(  ) A.{1,-1} B.{3,-3} C.{1,-1,3,-3} D.{5,-5,3,-3} 解析:選C.因為兩圓有且只有一個公共點,所以兩個圓內(nèi)切或外切,內(nèi)切時,|a|=1,外切時,|a|=3,所以實數(shù)

3、a的取值集合是{1,-1,3,-3}. 4.已知圓C:(x-1)2+y2=r2(r>0),設(shè)條件p:0

4、以圓心坐標為(1,0),半徑r=4,易知弦AB的垂直平分線l過圓心,且與直線AB垂直,而kAB=-,所以kl=2.由點斜式方程可得直線l的方程為y-0=2(x-1),即y=2x-2. 答案:y=2x-2 6.在平面直角坐標系中,A,B分別是x軸和y軸上的動點,若以AB為直徑的圓C與直線2x+y-4=0相切,則圓C面積的最小值為________. 解析:因為∠AOB=90°,所以點O在圓C上.設(shè)直線2x+y-4=0與圓C相切于點D,則點C與點O間的距離等于它到直線2x+y-4=0的距離,所以點C在以O(shè)為焦點,以直線2x+y-4=0為準線的拋物線上,所以當且僅當O,C,D共線時,圓的直徑最小

5、為|OD|.又|OD|==,所以圓C的最小半徑為,所以圓C面積的最小值為π=π. 答案:π 7.已知圓C:(x-1)2+(y+2)2=10,求滿足下列條件的圓的切線方程. (1)過切點A(4,-1); (2)與直線l2:x-2y+4=0垂直. 解:(1)因為kAC==,所以過切點A(4,-1)的切線斜率為-3,所以過切點A(4,-1)的切線方程為y+1=-3(x-4),即3x+y-11=0. (2)設(shè)切線方程為2x+y+m=0,則=,所以m=±5,所以切線方程為2x+y±5=0. 8.已知圓C經(jīng)過點A(2,-1),和直線x+y=1相切,且圓心在直線y=-2x上. (1)求圓C的

6、方程; (2)已知直線l經(jīng)過原點,并且被圓C截得的弦長為2,求直線l的方程. 解:(1)設(shè)圓心的坐標為C(a,-2a), 則=.化簡, 得a2-2a+1=0,解得a=1. 所以C(1,-2),半徑|AC|==. 所以圓C的方程為(x-1)2+(y+2)2=2. (2)①當直線l的斜率不存在時,直線l的方程為x=0,此時直線l被圓C截得的弦長為2,滿足條件. ②當直線l的斜率存在時,設(shè)直線l的方程為y=kx,由題意得=1, 解得k=-, 所以直線l的方程為y=-x. 綜上所述,直線l的方程為x=0或3x+4y=0. [綜合題組練] 1.(2019·貴州黔東南聯(lián)考)在△A

7、BC中,若asin A+bsin B-csin C=0,則圓C:x2+y2=1與直線l:ax+by+c=0的位置關(guān)系是(  ) A.相切 B.相交 C.相離 D.不確定 解析:選A.因為asin A+bsin B-csin C=0,所以a2+b2-c2=0,故圓心C(0,0)到直線l:ax+by+c=0的距離d==1,故圓C:x2+y2=1與直線l:ax+by+c=0相切. 2.已知直線3x+4y-15=0與圓O:x2+y2=25交于A,B兩點,點C在圓O上,且 S△ABC=8,則滿足條件的點C的個數(shù)為(  ) A.1 B.2 C.3 D.4 解析:選C.圓心O到已知直線的距離

8、為d==3,因此|AB|=2=8,設(shè)點C到直線AB的距離為h,則S△ABC=×8×h=8,h=2,由于d+h=3+2=5=r(圓的半徑),因此與直線AB距離為2的兩條直線中的一條與圓相切,一條與圓相交,故符合條件的點C有三個. 3.過點M(1,2)的直線l與圓C:(x-3)2+(y-4)2=25交于A,B兩點,C為圓心,當∠ACB最小時,直線l的方程是________. 解析:設(shè)圓心C到直線l的距離為d,則有cos=,要使∠ACB最小,則d要取到最大值,此時直線l與直線CM垂直.而kCM==1,故直線l的方程為y-2=-1×(x-1),即x+y-3=0. 答案:x+y-3=0 4.(2

9、019·黑龍江大慶診斷考試)過動點P作圓:(x-3)2+(y-4)2=1的切線PQ,其中Q為切點,若|PQ|=|PO|(O為坐標原點),則|PQ|的最小值是________. 解析:由題可知圓(x-3)2+(y-4)2=1的圓心N(3,4).設(shè)點P的坐標為(m,n),則|PN|2=|PQ|2+|NQ|2=|PQ|2+1,又|PQ|=|PO|,所以|PN|2=|PO|2+1,即(m-3)2+(n-4)2=m2+n2+1,化簡得3m+4n=12,即點P在直線3x+4y=12上,則|PQ|的最小值為點O到直線3x+4y=12的距離,點O到直線3x+4y=12的距離d=,故|PQ|的最小值是. 答

10、案: 5.已知點P(2,2),圓C:x2+y2-8y=0,過點P的動直線l與圓C交于A,B兩點,線段AB的中點為M,O為坐標原點.  (1)求M的軌跡方程; (2)當|OP|=|OM|時,求l的方程及△POM的面積. 解:(1)圓C的方程可化為x2+(y-4)2=16,所以圓心為C(0,4),半徑為4. 設(shè)M(x,y),則=(x,y-4),=(2-x,2-y). 由題設(shè)知·=0,故x(2-x)+(y-4)(2-y)=0, 即(x-1)2+(y-3)2=2. 由于點P在圓C的內(nèi)部, 所以M的軌跡方程是(x-1)2+(y-3)2=2. (2)由(1)可知M的軌跡是以點N(1,3

11、)為圓心,為半徑的圓. 由于|OP|=|OM|,故O在線段PM的垂直平分線上. 又P在圓N上,從而ON⊥PM. 因為ON的斜率為3,所以l的斜率為-, 故l的方程為y=-x+. 又|OM|=|OP|=2,O到l的距離為, |PM|=2=, 所以△POM的面積為. 6.(綜合型)(2019·湖南東部六校聯(lián)考)已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方. (1)求圓C的方程; (2)過點M(1,0)的直線與圓C交于A,B兩點(A在x軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標;若不存在,

12、請說明理由. 解:(1)設(shè)圓心C(a,0)(a>-),則=2?a=0或a=-5(舍). 所以圓C:x2+y2=4. (2)當直線AB⊥x軸時,x軸平分∠ANB,此時N點的橫坐標恒大于0即可. 當直線AB的斜率存在時,設(shè)直線AB的方程為y=k(x-1),N(t,0),A(x1,y1),B(x2,y2), 由得,(k2+1)x2-2k2x+k2-4=0, 所以x1+x2=,x1x2=.若x軸平分∠ANB,則kAN=-kBN?+=0?+=0?2x1x2-(t+1)(x1+x2)+2t=0?-+2t=0?t=4, 所以當點N為(4,0)時,能使得∠ANM=∠BNM總成立. 5

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!