《(魯京津瓊專用)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第十一章 統(tǒng)計與統(tǒng)計案例 第2講 用樣本估計總體練習(xí)(含解析)》由會員分享,可在線閱讀,更多相關(guān)《(魯京津瓊專用)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第十一章 統(tǒng)計與統(tǒng)計案例 第2講 用樣本估計總體練習(xí)(含解析)(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第2講 用樣本估計總體
一、選擇題
1.(2015·重慶卷)重慶市2013年各月的平均氣溫(℃)數(shù)據(jù)的莖葉圖如下:
則這組數(shù)據(jù)的中位數(shù)是( )
A.19 B.20 C.21.5 D.23
解析 從莖葉圖知所有數(shù)據(jù)為8,9,12,15,18,20,20,23,23,28,31,32,中間兩個數(shù)為20,20,故中位數(shù)為20,選B.
答案 B
2.學(xué)校為了解學(xué)生在課外讀物方面的支出情況,抽取了n位同學(xué)進(jìn)行調(diào)查,結(jié)果顯示這些同學(xué)的支出都在[10,50](單位:元)內(nèi),其中支出在[30,50](單位:元)內(nèi)的同學(xué)有67人,其頻率分布直方圖如圖所示,則n的值為( )
2、
A.100 B.120 C.130 D.390
解析 支出在[30,50]內(nèi)的同學(xué)的頻率為1-(0.01+0.023)×10=0.67,n==100.
答案 A
3.我國古代數(shù)學(xué)名著《數(shù)書九章》有“米谷粒分”題:糧倉開倉收糧,有人送來米1 534石,驗得米內(nèi)夾谷,抽樣取米一把,數(shù)得254粒內(nèi)夾谷28粒,則這批米內(nèi)夾谷約為( )
A.134石 B.169石
C.338石 D.1 365石
解析 254粒和1 534石中夾谷的百分比含量是大致相同的,可據(jù)此估計這批米內(nèi)夾谷的數(shù)量.
設(shè)1 534石米內(nèi)夾谷x石,則由題意知=,
解得x≈169.故這批米內(nèi)夾谷
3、約為169石.
答案 B
4.(2016·全國Ⅲ卷)某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖.圖中A點表示十月的平均最高氣溫約為15 ℃,B點表示四月的平均最低氣溫約為5 ℃.下面敘述不正確的是( )
A.各月的平均最低氣溫都在0 ℃以上
B.七月的平均溫差比一月的平均溫差大
C.三月和十一月的平均最高氣溫基本相同
D.平均最高氣溫高于20 ℃的月份有5個
解析 對于選項A,由圖易知各月的平均最低氣溫都在0 ℃以上,A正確;對于選項B,七月的平均最高氣溫點與平均最低氣溫點間的距離大于一月的平均最高氣溫點與平均最低氣溫點間的距離
4、,所以七月的平均溫差比一月的平均溫差大,B正確;對于選項C,三月和十一月的平均最高氣溫均為10 ℃,所以C正確;對于選項D,平均最高氣溫高于20 ℃的月份有七月、八月、共2個月份,故D錯誤.
答案 D
5.(2015·安徽卷)若樣本數(shù)據(jù)x1,x2,…,x10的標(biāo)準(zhǔn)差為8,則數(shù)據(jù)2x1-1,2x2-1,…,2x10-1的標(biāo)準(zhǔn)差為( )
A.8 B.15 C.16 D.32
解析 已知樣本數(shù)據(jù)x1,x2,…,x10的標(biāo)準(zhǔn)差為s=8,則s2=64,數(shù)據(jù)2x1-1,2x2-1,…,2x10-1的方差為22s2=22×64,所以其標(biāo)準(zhǔn)差為=2×8=16,故選C.
答案 C
二、
5、填空題
6.(2015·廣東卷)已知樣本數(shù)據(jù)x1,x2,…,xn的平均數(shù)x=5,則樣本數(shù)據(jù)2x1+1,2x2+1,…,2xn+1的平均數(shù)為________.
解析 由條件知x==5,則所求平均數(shù)
x0==
=2x+1=2×5+1=11.
答案 11
7.某校女子籃球隊7名運(yùn)動員身高(單位:cm)分布的莖葉圖如圖,已知記錄的平均身高為175 cm,但記錄中有一名運(yùn)動員身高的末位數(shù)字不清晰,如果把其末位數(shù)字記為x,那么x的值為________.
解析 170+×(1+2+x+4+5+10+11)=175,
×(33+x)=5,即33+x=35,解得x=2.
答案 2
8.為
6、了了解一片經(jīng)濟(jì)林的生長情況,隨機(jī)抽取了其中60株樹木的底部周長(單位:cm),所得數(shù)據(jù)均在區(qū)間[80,130]上,其頻率分布直方圖如圖所示,則在抽測的60株樹木中,有________株樹木的底部周長小于100 cm.
解析 底部周長在[80,90)的頻率為0.015×10=0.15,底部周長在[90,100)的頻率為0.025×10=0.25,
樣本容量為60,所以樹木的底部周長小于100 cm的株數(shù)為(0.15+0.25)×60=24.
答案 24
三、解答題
9.某車間20名工人年齡數(shù)據(jù)如下表:
(1)求這20名工人年齡的眾數(shù)與極差;
(2)以十位數(shù)為莖,個位數(shù)為葉,
7、作出這20名工人年齡的莖葉圖;
(3)求這20名工人年齡的方差.
解 (1)這20名工人年齡的眾數(shù)為30;這20名工人年齡的極差為40-19=21.
(2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖如下:
(3)這20名工人年齡的平均數(shù)為(19+28×3+29×3+30×5+31×4+32×3+40)÷20=30;
所以這20名工人年齡的方差為
(30-19)2+(30-28)2+(30-29)2+(30-30)2+(30-31)2+(30-32)2+(30-40)2=12.6.
10.(2016·北京卷)某市居民用水?dāng)M實行階梯水價,每人月用水量中不超過w立方米的
8、部分按4元/立方米收費(fèi),超出w立方米的部分按10元/立方米收費(fèi).從該市隨機(jī)調(diào)查了10 000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖:
(1)如果w為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價格為4元/立方米,w至少定為多少?
(2)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替.當(dāng)w=3時,估計該市居民該月的人均水費(fèi).
解 (1)由用水量的頻率分布直方圖,知該市居民該月用水量在區(qū)間[0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3]內(nèi)的頻率依次為0.1,0.15,0.2,0.25,0.15.
所以該月用水量不超過3立方米
9、的居民占85%,用水量不超過2立方米的居民占45%.
依題意,w至少定為3.
(2)由用水量的頻率分布直方圖及題意,得居民該月用水費(fèi)用的數(shù)據(jù)分組與頻率分布表如下:
組號
1
2
3
4
5
6
7
8
分組
[2,4]
(4,6]
(6,8]
(8,10]
(10,12]
(12,17]
(17,22]
(22,27]
頻率
0.1
0.15
0.2
0.25
0.15
0.05
0.05
0.05
根據(jù)題意,該市居民該月的人均水費(fèi)估計為
4×0.1+6×0.15+8×0.2+10×0.25+12×0.15+17×0.05+22×0
10、.05+27×0.05=10.5(元).
11.如圖是一組樣本數(shù)據(jù)的頻率分布直方圖,則依據(jù)圖形中的數(shù)據(jù),可以估計總體的平均數(shù)與中位數(shù)分別是( )
A.12.5,12.5 B.13,13
C.13.5,12.5 D.13.5,13
解析 第1組的頻率為0.04×5=0.2,第2組的頻率為0.1×5=0.5,則第3組的頻率為1-0.2-0.5=0.3,估計總體平均數(shù)為7.5×0.2+12.5×0.5+17.5×0.3=13.由題意知,中位數(shù)在第2組內(nèi),設(shè)為10+x,則有0.1x=0.3,解得x=3,從而中位數(shù)是13.
答案 B
12.將某選手的9個得分去掉1個最高分,去掉
11、1個最低分,7個剩余分?jǐn)?shù)的平均分為91,現(xiàn)場作的9個分?jǐn)?shù)的莖葉圖,后來有1個數(shù)據(jù)模糊,無法辨認(rèn),在圖中以x表示:
則7個剩余分?jǐn)?shù)的方差為( )
A. B. C.36 D.
解析 由題意知=91,
解得x=4.所以s2=[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2]=(16+9+1+0+1+9+0)=.
答案 B
13.(2015·湖北卷)某電子商務(wù)公司對10 000名網(wǎng)絡(luò)購物者2014年度的消費(fèi)情況進(jìn)行統(tǒng)計,發(fā)現(xiàn)消費(fèi)金額(單位:萬元)都在區(qū)間[0.3,0.9]內(nèi),其頻率分布直方圖如圖
12、所示.
(1)直方圖中的a=________;
(2)在這些購物者中,消費(fèi)金額在區(qū)間[0.5,0.9]內(nèi)的購物者的人數(shù)為________.
解析 (1)由0.1×1.5+0.1×2.5+0.1a+0.1×2.0+0.1×0.8+0.1×0.2=1,解得a=3.
(2)區(qū)間[0.3,0.5)內(nèi)的頻率為0.1×1.5+0.1×2.5=0.4,故[0.5,0.9]內(nèi)的頻率為1-0.4=0.6.
因此,消費(fèi)金額在區(qū)間[0.5,0.9]內(nèi)的購物者的人數(shù)為0.6×10 000=6 000.
答案 (1)3 (2)6 000
14.(2014·全國Ⅰ卷)從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件
13、,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組
[75,85)
[85,95)
[95,105)
[105,115)
[115,125]
頻數(shù)
6
26
38
22
8
(1)作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定?
解 (1)樣本數(shù)據(jù)的頻率分布直方圖如圖所示:
(2)質(zhì)量指標(biāo)值的樣本平均數(shù)為
x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.
質(zhì)量指標(biāo)值的樣本方差為
s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.
所以這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)的估計值為100,方差的估計值為104.
(3)質(zhì)量指標(biāo)值不低于95的產(chǎn)品所占比例的估計值為
0.38+0.22+0.08=0.68.
由于該估計值小于0.8,故不能認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定.
8