影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

(課標通用版)2020版高考數(shù)學大一輪復習 第八章 立體幾何 第5講 直線、平面垂直的判定與性質(zhì)檢測 文

上傳人:Sc****h 文檔編號:120726527 上傳時間:2022-07-18 格式:DOC 頁數(shù):7 大小:2.19MB
收藏 版權(quán)申訴 舉報 下載
(課標通用版)2020版高考數(shù)學大一輪復習 第八章 立體幾何 第5講 直線、平面垂直的判定與性質(zhì)檢測 文_第1頁
第1頁 / 共7頁
(課標通用版)2020版高考數(shù)學大一輪復習 第八章 立體幾何 第5講 直線、平面垂直的判定與性質(zhì)檢測 文_第2頁
第2頁 / 共7頁
(課標通用版)2020版高考數(shù)學大一輪復習 第八章 立體幾何 第5講 直線、平面垂直的判定與性質(zhì)檢測 文_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(課標通用版)2020版高考數(shù)學大一輪復習 第八章 立體幾何 第5講 直線、平面垂直的判定與性質(zhì)檢測 文》由會員分享,可在線閱讀,更多相關(guān)《(課標通用版)2020版高考數(shù)學大一輪復習 第八章 立體幾何 第5講 直線、平面垂直的判定與性質(zhì)檢測 文(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第5講 直線、平面垂直的判定與性質(zhì) [基礎題組練] 1.如圖,在Rt△ABC中,∠ABC=90°,P為△ABC所在平面外一點,PA⊥平面ABC,則四面體PABC中共有直角三角形的個數(shù)為(  ) A.4 B.3 C.2 D.1 解析:選A.由PA⊥平面ABC可得△PAC,△PAB是直角三角形,且PA⊥BC.又∠ABC=90°,所以△ABC是直角三角形,且BC⊥平面PAB,所以BC⊥PB,即△PBC為直角三角形,故四面體PABC中共有4個直角三角形. 2.下列命題中不正確的是(  ) A.如果平面α⊥平面β,且直線l∥平面α,則直線l⊥平面β B.如果平面α⊥平面β,那么平面α內(nèi)

2、一定存在直線平行于平面β C.如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β D.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ 解析:選A.根據(jù)面面垂直的性質(zhì),知A不正確,直線l可能平行于平面β,也可能在平面β內(nèi)或與平面β相交. 3.在正三棱柱ABC-A1B1C1中,AB=1,點D在棱BB1上,且BD=1,則AD與平面AA1C1C所成角的正弦值為(  ) A. B. C. D. 解析:選B.如圖,取AC,A1C1的中點分別為M,M1,連接MM1,BM,過點D作DN∥BM交MM1于點N,則易證DN⊥平面AA1C1C,連接AN,則∠DAN為AD與平面A

3、A1C1C所成的角.在直角三角形DNA中,sin ∠DAN===. 4.如圖,在正四面體PABC中,D,E,F(xiàn)分別是AB,BC,CA的中點,下面四個結(jié)論不成立的是(  ) A.BC∥平面PDF B.DF⊥平面PAE C.平面PDF⊥平面PAE D.平面PDE⊥平面ABC 解析:選D.因為BC∥DF,DF?平面PDF,BC?平面PDF, 所以BC∥平面PDF,故選項A正確. 在正四面體中,AE⊥BC,PE⊥BC,DF∥BC, 所以BC⊥平面PAE,則DF⊥平面PAE,從而平面PDF⊥平面PAE.因此選項B,C均正確. 5.若圓錐的側(cè)面積是底面積的3倍,則其母線與底面夾角的余弦

4、值為________. 解析:設圓錐的底面半徑為r,母線長為l,由題意πrl=3πr2,即l=3r,母線與底面夾角為θ,則cos θ==. 答案: 6.如圖,已知∠BAC=90°,PC⊥平面ABC,則在△ABC,△PAC的邊所在的直線中,與PC垂直的直線有__________________;與AP垂直的直線有________. 解析:因為PC⊥平面ABC, 所以PC垂直于直線AB,BC,AC. 因為AB⊥AC,AB⊥PC,AC∩PC=C, 所以AB⊥平面PAC,又因為AP?平面PAC, 所以AB⊥AP,與AP垂直的直線是AB. 答案:AB,BC,AC AB 7.如圖,在四

5、棱錐E-ABCD中,平面EAB⊥平面ABCD,四邊形ABCD為矩形,EA⊥EB,點M,N分別是AE,CD的中點. 求證:(1)直線MN∥平面EBC; (2)直線EA⊥平面EBC. 證明:(1)取BE的中點F,連接CF,MF. 因為M是AE的中點,所以MF綊AB. 因為N是矩形ABCD中邊CD的中點, 所以NC綊AB,所以MF綊NC, 所以四邊形MNCF是平行四邊形,所以MN∥CF. 又MN?平面EBC,CF?平面EBC,所以MN∥平面EBC. (2)因為平面EAB⊥平面ABCD,平面EAB∩平面ABCD=AB,BC?平面ABCD,又因為在矩形ABCD中,BC⊥AB,所以B

6、C⊥平面EAB. 又因為EA?平面EAB,所以BC⊥EA. 因為EA⊥EB,BC∩EB=B,EB?平面EBC,BC?平面EBC, 所以EA⊥平面EBC. 8.如圖,四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,PA=AD=2,點M,N分別在棱PD,PC上,且PC⊥平面AMN. (1)求證:AM⊥PD; (2)求直線CD與平面AMN所成角的正弦值. 解:(1)證明:因為四邊形ABCD是正方形,所以CD⊥AD. 又因為PA⊥底面ABCD,所以PA⊥CD,故CD⊥平面PAD. 又AM?平面PAD,則CD⊥AM, 而PC⊥平面AMN,有PC⊥AM,又PC∩CD=C,則AM⊥

7、平面PCD,故AM⊥PD. (2)延長NM,CD交于點E,因為PC⊥平面AMN, 所以NE為CE在平面AMN內(nèi)的射影,故∠CEN為CD(即CE)與平面AMN所成的角, 又因為CD⊥PD,EN⊥PN,則有∠CEN=∠MPN, 在Rt△PMN中,sin ∠MPN==, 故CD與平面AMN所成角的正弦值為. [綜合題組練] 1.(應用型)正方形ABCD與等邊三角形BCE有公共邊BC,若∠ABE=120°,則CE與平面ABCD所成角的大小為(  ) A. B. C. D. 解析:選C.作EG⊥底面ABCD于點G,作GH⊥DC于點H,設所求的角為θ, 連接EH,CG,則∠ECG

8、=θ, 則CD⊥EH. 又得∠ECD=120°, 設AB=2a, 則EH=a, GH=a, 所以EG=a, sin θ===,所以θ=. 故選C. 2.(2018·高考全國卷Ⅱ)已知圓錐的頂點為S,母線SA,SB互相垂直,SA與圓錐底面所成角為30°.若△SAB的面積為8,則該圓錐的體積為________. 解析:由題意畫出圖形,如圖,設AC是底面圓O的直徑,連接SO,則SO是圓錐的高.設圓錐的母線長為l,則由SA⊥SB,△SAB的面積為8,得l2=8,得l=4.在Rt△ASO 中,由題意知∠SAO=30°,所以SO=l=2,AO=l=2. 故該圓錐的體積V=π×AO2×

9、SO=π×(2)2×2=8π. 答案:8π 3.(2019·廣州市調(diào)研測試)如圖,已知多面體PABCDE的底面ABCD是邊長為2的菱形,PA⊥底面ABCD,ED∥PA,且PA=2ED=2. (1)證明:平面PAC⊥平面PCE; (2)若∠ABC=60°,求三棱錐P-ACE的體積. 解:(1)如圖,連接BD,交AC于點O,設PC的中點為F,連接OF,EF. 易知O為AC的中點, 所以OF∥PA,且OF=PA, 因為DE∥PA,且DE=PA, 所以OF∥DE,且OF=DE, 所以四邊形OFED為平行四邊形,所以OD∥EF,即BD∥EF. 因為PA⊥平面ABCD,BD?

10、平面ABCD,所以PA⊥BD. 因為四邊形ABCD是菱形,所以BD⊥AC. 因為PA∩AC=A,所以BD⊥平面PAC. 因為BD∥EF,所以EF⊥平面PAC. 因為EF?平面PCE,所以平面PAC⊥平面PCE. (2)法一:因為∠ABC=60°,所以△ABC是等邊三角形,所以AC=2. 又PA⊥平面ABCD,AC?平面ABCD,所以PA⊥AC. 所以S△PAC=PA·AC=2. 因為EF⊥平面PAC,所以EF是三棱錐E-PAC的高. 易知EF=DO=BO=, 所以三棱錐P-ACE的體積VP-ACE=VE-PAC=S△PAC×EF=×2×=. 法二:因為底面ABCD為菱形,

11、且∠ABC=60°,所以△ACD為等邊三角形. 取AD的中點M,連接CM,則CM⊥AD,且CM=. 因為PA⊥平面ABCD,所以PA⊥CM,又PA∩AD=A, 所以CM⊥平面PADE,所以CM是三棱錐C-PAE的高. 易知S△PAE=2, 所以三棱錐P-ACE的體積VP-ACE=VC-PAE=S△PAE×CM=×2×=. 4.(綜合型)如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,M為棱AC的中點.AB=BC,AC=2,AA1=. (1)求證:B1C∥平面A1BM; (2)求證:AC1⊥平面A1BM. 證明:(1)連接AB1與A1B,兩線交于點O,連接OM

12、. 在△B1AC中, 因為M,O分別為AC,AB1的中點, 所以OM∥B1C, 又因為OM?平面A1BM,B1C?平面A1BM, 所以B1C∥平面A1BM. (2)因為側(cè)棱AA1⊥底面ABC, BM?平面ABC,所以AA1⊥BM, 又因為M為棱AC的中點,AB=BC, 所以BM⊥AC. 因為AA1∩AC=A, AA1,AC?平面ACC1A1, 所以BM⊥平面ACC1A1, 所以BM⊥AC1. 因為AC=2,所以AM=1. 又因為AA1=, 所以在Rt△ACC1和Rt△A1AM中, tan ∠AC1C=tan ∠A1MA=, 所以∠AC1C=∠A1MA, 即∠AC1C+∠C1AC =∠A1MA+∠C1AC=90°, 所以A1M⊥AC1. 因為BM∩A1M=M, BM,A1M?平面A1BM, 所以AC1⊥平面A1BM. 7

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!