《人教新課標(biāo)A版高中數(shù)學(xué)必修4 第一章三角函數(shù) 1.6三角函數(shù)模型的應(yīng)用 同步測(cè)試C卷》由會(huì)員分享,可在線閱讀,更多相關(guān)《人教新課標(biāo)A版高中數(shù)學(xué)必修4 第一章三角函數(shù) 1.6三角函數(shù)模型的應(yīng)用 同步測(cè)試C卷(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、人教新課標(biāo)A版高中數(shù)學(xué)必修4 第一章三角函數(shù) 1.6三角函數(shù)模型的應(yīng)用 同步測(cè)試C卷
姓名:________ 班級(jí):________ 成績(jī):________
一、 單選題 (共15題;共30分)
1. (2分) 若函數(shù)的圖像關(guān)于直線對(duì)稱,那么a=( )
A .
B . -
C . 1
D . -1
2. (2分) 穩(wěn)定房?jī)r(jià)是我國(guó)今年實(shí)施宏觀調(diào)控的重點(diǎn),國(guó)家最近出臺(tái)的一系列政策已對(duì)各地的房地產(chǎn)市場(chǎng)產(chǎn)生了影響.北京市某房地產(chǎn)介紹所對(duì)本市一樓群在今年的房?jī)r(jià)作了統(tǒng)計(jì)與預(yù)測(cè):發(fā)現(xiàn)每個(gè)季度的平均單價(jià)y(每平方米面積的價(jià)格,單位為元)與第x
2、季度之間近似滿足:y=500sin(ωx+?)+9500 (?>0),已知第一、二季度平均單價(jià)如下表所示:
x
1
2
3
y
10000
9500
?
則此樓群在第三季度的平均單價(jià)大約是 ( )
A . 10000元
B . 9500元
C . 9000元
D . 8500元
3. (2分) 若動(dòng)直線x=a與函數(shù)f(x)=sinx和g(x)=cosx的圖像分別交于M,N兩點(diǎn),則|MN|的最大值為( )
A . 1
B .
C .
D . 2
4. (2分) 函數(shù)(其中A>0,)的圖象如圖所示,為了得到f(x)的圖象,則只需將g(x)=s
3、in2x的圖象( )
A . 向右平移個(gè)長(zhǎng)度單位
B . 向左平移個(gè)長(zhǎng)度單位
C . 向右平移個(gè)長(zhǎng)度單位
D . 向左平移個(gè)長(zhǎng)度單位
5. (2分) 已知兩座燈塔A和B與海洋觀察站C的距離都等于a km,燈塔A在觀察站C的北偏東20,燈塔B在觀察站C的南偏東40,則燈塔A與B的距離為( )
A . akm
B . akm
C . akm
D . 2akm
6. (2分) (2019唐山模擬) 已知 sinα+ cosα=2,則tanα=( )
A . -
B .
C . -
D .
7. (2分) (2018高一下宜昌期末
4、) 如圖,某地一天從 6 ~ 14 時(shí)的溫度變化曲線近似滿足函數(shù): ,則中午 12 點(diǎn)時(shí)最接近的溫度為( )
A .
B .
C .
D .
8. (2分) (2018高一下張家界期末) 某海輪以每小時(shí)30海里的速度航行,在點(diǎn) 測(cè)得海面上油井 在南偏東 ,海輪向北航行40分鐘后到達(dá)點(diǎn) ,測(cè)得油井 在南偏東 ,海輪改為北偏東 的航向再行駛80分鐘到達(dá)點(diǎn) ,則 兩點(diǎn)的距離為( )(單位:海里)
A .
B .
C .
D .
9. (2分) 在一個(gè)圓形波浪實(shí)驗(yàn)水池的中心有三個(gè)振動(dòng)源,假如不計(jì)其它因素,在t秒內(nèi),它們引發(fā)的水面
5、波動(dòng)可分別由函數(shù)和描述,如果兩個(gè)振動(dòng)源同時(shí)啟動(dòng),則水面波動(dòng)由兩個(gè)函數(shù)的和表達(dá),在某一時(shí)刻使這三個(gè)振動(dòng)源同時(shí)開(kāi)始工作,那么,原本平靜的水面將呈現(xiàn)的狀態(tài)是( )
A . 仍保持平靜
B . 不斷波動(dòng)
C . 周期性保持平靜
D . 周期性保持波動(dòng)
10. (2分) 某港口的水深(米)是時(shí)間t(0≤t≤24)(單位:時(shí))的函數(shù),記作y=f(t)下面是該港口某季節(jié)每天水深的數(shù)據(jù):
t
0
3
6
9
12
15
18
21
24
y
10.0
13.0
10.01
7.0
10.0
13.0
10.01
7.0
10.0
經(jīng)過(guò)長(zhǎng)期觀察,y=f(
6、t)的曲線可近似地看作y=Asinωt+b的圖象,一般情況下,船舶航行時(shí),船底離海底的距離不小于5m是安全的(船舶??堪稌r(shí),船底只需不碰海底即可).某船吃水深度(船底離水面距離)為6.5m,如果該船想在同一天內(nèi)安全出港,問(wèn)它至多能在港內(nèi)停留的時(shí)間是(忽略進(jìn)出港所用時(shí)間)( )
A . 17
B . 16
C . 5
D . 4
11. (2分) (2017臨汾模擬) 水車在古代是進(jìn)行灌溉引水的工具,是人類的一項(xiàng)古老的發(fā)明,也是人類利用自然和改造自然的象征.如圖是一個(gè)半徑為R的水車,一個(gè)水斗從點(diǎn)A(3 ,﹣3)出發(fā),沿圓周按逆時(shí)針?lè)较騽蛩傩D(zhuǎn),且旋轉(zhuǎn)一周用時(shí)60秒.經(jīng)過(guò)t秒后,
7、水斗旋轉(zhuǎn)到P點(diǎn),設(shè)P的坐標(biāo)為(x,y),其縱坐標(biāo)滿足y=f(t)=Rsin(ωt+φ)(t≥0,ω>0,|φ|< ).則下列敘述錯(cuò)誤的是( )
A .
B . 當(dāng)t∈[35,55]時(shí),點(diǎn)P到x軸的距離的最大值為6
C . 當(dāng)t∈[10,25]時(shí),函數(shù)y=f(t)單調(diào)遞減
D . 當(dāng)t=20時(shí),
12. (2分) 已知兩座燈塔A和B與海洋觀察站C的距離都等于a km,燈塔A在觀察站C的北偏東20,燈塔B在觀察站C的南偏東40,則燈塔A與B的距離為( ▲)
A . a km
B . a km
C . a km
D . 2a km
13. (2分) 半徑為1的球
8、內(nèi)切于一圓錐,則圓錐體積的最小值為( )
A . 2π
B .
C . 3π
D .
14. (2分) 設(shè)y=f(x)是某港口水的深度y(米)關(guān)于時(shí)間t(時(shí))的函數(shù),其中0≤t≤24,下表是該港口某一天從0時(shí)至24時(shí)記錄的時(shí)間t與水深y的關(guān)系:
t
0
3
6
9
12
15
18
21
24
y
12
15.1
12.1
9.1
11.9
14.9
11.9
8.9
12.1
經(jīng)長(zhǎng)期觀察,函數(shù)y=f(t)的圖象可以近似地看成函數(shù)y=k+Asin(ωt+φ)的圖象,下面的函數(shù)中,最能近似表示表中數(shù)據(jù)間對(duì)應(yīng)關(guān)系的函數(shù)是(t∈[0,24
9、])( )
A .
B .
C .
D . y=12+3sin
15. (2分) 已知是函數(shù)的一條對(duì)稱軸,且的最大值為 , 則函數(shù)( )
A . 最大值是4,最小值是0
B . 最大值是2,最小值是-2
C . 最小值不可能是-4
D . 最大值可能是0
二、 填空題 (共5題;共5分)
16. (1分) 如圖,一艘輪船B在海上以40nmile/h的速度沿著方位角(從指北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的水平角)為165的方向航行,此時(shí)輪船B的正南方有一座燈塔A.已知AB=800nmile,則輪船B航行________h時(shí)距離燈塔A最近.
17. (1分)
10、 在同一平面直角坐標(biāo)系中,函數(shù)y=cos(+)的圖象和直線y=的交點(diǎn)個(gè)數(shù)是________ 個(gè)
18. (1分) 點(diǎn)A(x,y)在單位圓上,從A0(,)出發(fā),沿逆時(shí)針?lè)较蜃鰟蛩賵A周運(yùn)動(dòng),每12秒運(yùn)動(dòng)一周.則經(jīng)過(guò)時(shí)間t后,y關(guān)于t的函數(shù)解析式為_(kāi)_______
19. (1分) (2019高二上桂林期末) 一貨輪航行到M處,測(cè)得燈塔S在貨輪的北偏東15,與燈塔S相距20海里,隨后貨輪繼續(xù)沿正西方向航行30分鐘到達(dá)N處后,又測(cè)得燈塔在貨輪的北偏東45,則貨輪的速度為_(kāi)_______海里/時(shí).
20. (1分) 在一幢10米高的樓頂測(cè)得對(duì)面一塔吊頂?shù)难鼋菫?0,塔基的俯角為45,那么這座塔吊
11、的高是________米.
三、 解答題 (共5題;共25分)
21. (5分) 如圖:已知圓O的直徑是2,點(diǎn)C在直徑AB的延長(zhǎng)線上,BC=1,點(diǎn)P是圓O上的一個(gè)動(dòng)點(diǎn),以PC為邊作正三角形PCD,且點(diǎn)D與圓心分別在PC的兩側(cè),求四邊形OPDC面積的最大值.
22. (5分) 如圖所示,某市擬在長(zhǎng)為 的道路 的一側(cè)修建一條運(yùn)動(dòng)賽道,賽道的前一部分為曲線段 ,該曲線段為函數(shù) , 的圖象,且圖象的最高點(diǎn)為 ;賽道的后一部分為折線段 .為保證參賽運(yùn)動(dòng)員的安全,限定 ,求 , 的值和 , 兩點(diǎn)間的距離.
23. (5分) (2017高二下徐州期末) 如圖,在南北方
12、向有一條公路,一半徑為100m的圓形廣場(chǎng)(圓心為O)與此公路一邊所在直線l相切于點(diǎn)A.點(diǎn)P為北半圓?。ɑPB)上的一點(diǎn),過(guò)P作直線l的垂線,垂足為Q.計(jì)劃在△PAQ內(nèi)(圖中陰影部分)進(jìn)行綠化.設(shè)△PAQ的面積為S(單位:m2).
(1) 設(shè)∠BOP=α(rad),將S表示為α的函數(shù);
(2) 確定點(diǎn)P的位置,使綠化面積最大,并求出最大面積.
24. (5分) (2017南京模擬) 在水域上建一個(gè)演藝廣場(chǎng),演藝廣場(chǎng)由看臺(tái)Ⅰ,看臺(tái)Ⅱ,三角形水域ABC,及矩形表演臺(tái)BCDE四個(gè)部分構(gòu)成(如圖),看臺(tái)Ⅰ,看臺(tái)Ⅱ是分別以AB,AC為直徑的兩個(gè)半圓形區(qū)域,且看臺(tái)Ⅰ的面積是看臺(tái)Ⅱ的面積的3
13、倍,矩形表演臺(tái)BCDE 中,CD=10米,三角形水域ABC的面積為 平方米,設(shè)∠BAC=θ.
(1) 求BC的長(zhǎng)(用含θ的式子表示);
(2) 若表演臺(tái)每平方米的造價(jià)為0.3萬(wàn)元,求表演臺(tái)的最低造價(jià).
25. (5分) (2015高三上上海期中) 如圖:某污水處理廠要在一個(gè)矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(Rt△FHE,H是直角頂點(diǎn))來(lái)處理污水,管道越長(zhǎng),污水凈化效果越好.設(shè)計(jì)要求管道的接口H是AB的中點(diǎn),E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=10 米,記∠BHE=θ.
(1) 試將污水凈化管道的長(zhǎng)度L表示為θ的函數(shù),并寫出定義
14、域;
(2) 問(wèn):當(dāng)θ取何值時(shí),污水凈化效果最好?并求出此時(shí)管道的長(zhǎng)度.
第 12 頁(yè) 共 12 頁(yè)
參考答案
一、 單選題 (共15題;共30分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
二、 填空題 (共5題;共5分)
16-1、
17-1、
18-1、
19-1、
20-1、
三、 解答題 (共5題;共25分)
21-1、答案:略
22-1、
23-1、
23-2、
24-1、
24-2、
25-1、
25-2、