《人教新課標A版 高中數(shù)學(xué) 必修3 第三章概率 3.3幾何概型 同步測試(II)卷》由會員分享,可在線閱讀,更多相關(guān)《人教新課標A版 高中數(shù)學(xué) 必修3 第三章概率 3.3幾何概型 同步測試(II)卷(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、人教新課標A版 高中數(shù)學(xué) 必修3 第三章概率 3.3幾何概型 同步測試(II)卷
姓名:________ 班級:________ 成績:________
一、 單選題 (共15題;共30分)
1. (2分) (2012湖北) 如圖,在圓心角為直角的扇形OAB中,分別以O(shè)A,OB為直徑作兩個半圓.在扇形OAB內(nèi)隨機取一點,則此點取自陰影部分的概率是( )
A . 1﹣
B . ﹣
C .
D .
2. (2分) (2016高一下周口期末) 有四個游戲盤,如果撒一粒黃豆落在陰影部分,則可中獎,小明希望中獎,他應(yīng)當選擇的游
2、戲盤為( )
A .
B .
C .
D .
3. (2分) (2016高二上棗陽期中) 設(shè)點(a,b)是區(qū)域 內(nèi)的任意一點,則使函數(shù)f(x)=ax2﹣2bx+3在區(qū)間[ ,+∞)上是增函數(shù)的概率為( )
A .
B .
C .
D .
4. (2分) 在區(qū)間[0,1]上任意取兩個實數(shù)a,b,則函數(shù)f(x) =在區(qū)間[-1,1]上有且僅有一個零點的概率為( )
A .
B .
C .
D .
5. (2分) (2017高二下南陽期末) 在如圖所示的正方形中隨機投擲10000個點,則落入陰影部分(曲線C為正態(tài)分布
3、N(﹣1,1)的密度曲線在正方形內(nèi)的部分)的點的個數(shù)的估計值為( )
A . 1193
B . 1359
C . 2718
D . 3413
6. (2分) 在數(shù)軸上的線段[0,3]上任取一點,則此點對應(yīng)的實數(shù)小于1的概率是( )
A .
B .
C .
D .
7. (2分) (2019高二上保定月考) 若點集 ,設(shè)點集 .現(xiàn)向區(qū)域M內(nèi)任投一點,則該點落在區(qū)域B內(nèi)的概率為( )
A .
B .
C .
D .
8. (2分) 已知P是△ABC所在平面內(nèi)一點,++2= , 現(xiàn)將一粒黃豆隨機撒在△ABC內(nèi),則黃豆落在△
4、PBC內(nèi)的概率是( )
A .
B .
C .
D .
9. (2分) 利用計算機產(chǎn)生0~1之間的均勻隨機數(shù)a,則使關(guān)于x的一元二次方程x2﹣x+a=0無實根的概率為( )
A .
B .
C .
D .
10. (2分) 在中產(chǎn)生區(qū)間上均勻隨機數(shù)的函數(shù)為“( )”,在用計算機模擬估計函數(shù)的圖像、直線和軸在區(qū)間上部分圍成的圖形面積時,隨機點與該區(qū)域內(nèi)的點的坐標變換公式為( )
A .
B .
C . ,
D .
11. (2分) (2017長春模擬) 下面四個殘差圖中可以反映出回歸模型擬合精度較好的為( )
5、
A . 圖1
B . 圖2
C . 圖3
D . 圖4
12. (2分) 利用計算機在區(qū)間(0,1)上產(chǎn)生兩個隨機數(shù)a和b,則方程 有實根的概率為( )
A .
B .
C .
D . 1
13. (2分) (2016淮南模擬) 《九章算術(shù)》是我國古代數(shù)學(xué)名著,也是古代東方數(shù)學(xué)的代表作.書中有如下問題:“今有勾八步,股一十五步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為8步和15步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)若向此三角形內(nèi)投豆子,則落在其內(nèi)切圓內(nèi)的概率是( )
A .
B .
C .
D .
14. (2
6、分) (2016高一下福州期中) 天氣預(yù)報說,在今后的三天中,每一天下雨的概率均為40%.現(xiàn)采用隨機模擬試驗的方法估計這三天中恰有兩天下雨的概率:先利用計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三個隨機數(shù)作為一組,代表這三天的下雨情況.經(jīng)隨機模擬試驗產(chǎn)生了如下20組隨機數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計,這三天中恰有兩天下雨的概率近似為( )
A . 0.35
B . 0.2
7、5
C . 0.20
D . 0.15
15. (2分) 設(shè)不等式組表示平面區(qū)域為D,在區(qū)域D內(nèi)隨機取一個點,則此點到坐標原點的距離大于的概率是( )
A .
B .
C .
D .
二、 解答題 (共4題;共20分)
16. (5分) (2016高一下衡陽期中) 設(shè)O為坐標原點,點P的坐標(x﹣2,x﹣y)
(1) 在一個盒子中,放有標號為1,2,3的三張卡片,現(xiàn)從此盒中有放回地先后抽到兩張卡片的標號分別記為x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(2) 若利用計算機隨機在[0,3]上先后取兩個數(shù)分別記為x,y,求P點在第一
8、象限的概率.
17. (5分) (2017高三上徐州期中) 某同學(xué)在上學(xué)路上要經(jīng)過A、B、C三個帶有紅綠燈的路口.已知他在A、B、C三個路口遇到紅燈的概率依次是 、 、 ,遇到紅燈時停留的時間依次是40秒、20秒、80秒,且在各路口是否遇到紅燈是相互獨立的.
(1) 求這名同學(xué)在上學(xué)路上在第三個路口首次遇到紅燈的概率;,
(2) 求這名同學(xué)在上學(xué)路上因遇到紅燈停留的總時間.
18. (5分) 如圖,已知 是半圓 的直徑, , 是將半圓圓周四等分的三個分點.
(1) 從 這5個點中任取3個點,求這3個點組成直角三角形的概率;
(2) 在半圓內(nèi)任取一點
9、,求 的面積大于 的概率.
19. (5分) 如圖,一張圓形桌面被分成了M、N、P、Q四個區(qū)域,∠AOB=30,∠BOC=45,∠COD=60.將一粒小石子隨機扔到桌面上,假設(shè)小石子不落在線上,求下列事件的概率:
(Ⅰ)小石子落在區(qū)域M內(nèi)的概率;
(Ⅱ)小石子落在區(qū)域M或區(qū)域N內(nèi)的概率;
(Ⅲ)小石子落在區(qū)域Q內(nèi)的概率.
三、 填空題 (共5題;共5分)
20. (1分) 為了近似估計π的值,用計算機分別產(chǎn)生90個在[﹣1,1]的均勻隨機數(shù)x1 , x2 , …,x90和y1 , y2 , …,y90 , 在90組數(shù)對(xi , yi)(1≤i≤90,i∈N*)中,經(jīng)統(tǒng)計
10、有25組數(shù)對滿足 , 則以此估計的π值為________.
21. (1分) (2017涼山模擬) 已知單位圓內(nèi)有一封閉圖形,現(xiàn)向單位圓內(nèi)隨機撒N顆黃豆,恰有n顆落在該封閉圖形內(nèi),則該封閉圖形的面積估計值為________.
22. (1分) (2016高一下衡陽期末) 已知矩形ABCD中,AB=2,BC=1,在矩形ABCD內(nèi)隨機取一點M,則BM<BC的概率為________.
23. (1分) (2016高一下南市期末) 在區(qū)間[﹣ , ]上任取一個數(shù)x,則函數(shù)f(x)=3sin(2x﹣ )的值不小于0的概率為________.
24. (1分) (2019高二上張
11、家口月考) 已知直線 , 與圓 相交于 、 兩點, 的取值范圍為________,弦長 的概率為________.
第 12 頁 共 12 頁
參考答案
一、 單選題 (共15題;共30分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
二、 解答題 (共4題;共20分)
16-1、
16-2、
17-1、
17-2、
18-1、
18-2、
19-1、
三、 填空題 (共5題;共5分)
20-1、
21-1、
22-1、
23-1、
24-1、