影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2018-2019版高中數(shù)學 第一章 計數(shù)原理 1.1 分類加法計數(shù)原理與分步乘法計數(shù)原理 第2課時 兩個計數(shù)原理的綜合應用課件 新人教A版選修2-3.ppt

上傳人:jun****875 文檔編號:13678194 上傳時間:2020-06-24 格式:PPT 頁數(shù):35 大?。?.34MB
收藏 版權申訴 舉報 下載
2018-2019版高中數(shù)學 第一章 計數(shù)原理 1.1 分類加法計數(shù)原理與分步乘法計數(shù)原理 第2課時 兩個計數(shù)原理的綜合應用課件 新人教A版選修2-3.ppt_第1頁
第1頁 / 共35頁
2018-2019版高中數(shù)學 第一章 計數(shù)原理 1.1 分類加法計數(shù)原理與分步乘法計數(shù)原理 第2課時 兩個計數(shù)原理的綜合應用課件 新人教A版選修2-3.ppt_第2頁
第2頁 / 共35頁
2018-2019版高中數(shù)學 第一章 計數(shù)原理 1.1 分類加法計數(shù)原理與分步乘法計數(shù)原理 第2課時 兩個計數(shù)原理的綜合應用課件 新人教A版選修2-3.ppt_第3頁
第3頁 / 共35頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2018-2019版高中數(shù)學 第一章 計數(shù)原理 1.1 分類加法計數(shù)原理與分步乘法計數(shù)原理 第2課時 兩個計數(shù)原理的綜合應用課件 新人教A版選修2-3.ppt》由會員分享,可在線閱讀,更多相關《2018-2019版高中數(shù)學 第一章 計數(shù)原理 1.1 分類加法計數(shù)原理與分步乘法計數(shù)原理 第2課時 兩個計數(shù)原理的綜合應用課件 新人教A版選修2-3.ppt(35頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第2課時 兩個計數(shù)原理的綜合應用,第一章 1.1 分類加法計數(shù)原理與分步乘法計數(shù)原理,,學習目標 1.進一步理解分類加法計數(shù)原理和分步乘法計數(shù)原理的區(qū)別. 2.會正確應用這兩個計數(shù)原理計數(shù).,,,問題導學,達標檢測,,題型探究,內容索引,問題導學,知識點一 兩個計數(shù)原理的區(qū)別與聯(lián)系,解決較為復雜的計數(shù)問題,一般要將兩個計數(shù)原理綜合應用.使用時要做到目的明確,層次分明,先后有序,還需特別注意以下兩點: (1)合理分類,準確分步:處理計數(shù)問題,應扣緊兩個原理,根據(jù)具體問題首先弄清楚是“分類”還是“分步”,要搞清楚“分類”或者“分步”的具體標準.分類時需要滿足兩 個條件:①類與類之間要互斥(保證不重

2、復);②總數(shù)要完備(保證不遺漏),也就是要確定一個合理的分類標準.分步時應按事件發(fā)生的連貫過程進行分析,必須做到步與步之間互相獨立,互不干擾,并確保連續(xù)性.,知識點二 兩個計數(shù)原理的應用,(2)特殊優(yōu)先,一般在后:解含有特殊元素、特殊位置的計數(shù)問題,一般應優(yōu)先安排特殊元素,優(yōu)先確定特殊位置,再考慮其他元素與其他位置,體現(xiàn)出解題過程中的主次思想.,題型探究,例1 用0,1,2,3,4五個數(shù)字, (1)可以排成多少個三位數(shù)字的電話號碼?,解 三位數(shù)字的電話號碼,首位可以是0,數(shù)字也可以重復,每個位置都有5種排法,共有555=53=125(種).,類型一 組數(shù)問題,解答,(2)可以排成多少個三位數(shù)?

3、,解 三位數(shù)的首位不能為0,但可以有重復數(shù)字,首先考慮首位的排法,除0外共有4種方法,第二、三位可以排0,因此,共有455=100(種).,(3)可以排成多少個能被2整除的無重復數(shù)字的三位數(shù)?,解 被2整除的數(shù)即偶數(shù),末位數(shù)字可取0,2,4, 因此,可以分兩類,一類是末位數(shù)字是0,則有43=12(種)排法; 一類是末位數(shù)字不是0,則末位有2種排法,即2或4,再排首位,因0不能在首位, 所以有3種排法,十位有3種排法,因此有233=18(種)排法. 因而有12+18=30(種)排法.即可以排成30個能被2整除的無重復數(shù)字的三位數(shù).,解答,引申探究 由本例中的五個數(shù)字可組成多少個無重復數(shù)字的四位奇

4、數(shù)?,解 完成“組成無重復數(shù)字的四位奇數(shù)”這件事,可以分四步:第一步定個位,只能從1,3中任取一個,有2種方法; 第二步定首位,把1,2,3,4中除去用過的一個剩下的3個中任取一個,有3種方法; 第三步,第四步把剩下的包括0在內的3個數(shù)字先排百位有3種方法,再排十位有2種方法.由分步乘法計數(shù)原理知共有2332=36(個).,解答,反思與感悟 對于組數(shù)問題,應掌握以下原則: (1)明確特殊位置或特殊數(shù)字,是我們采用“分類”還是“分步”的關鍵.一般按特殊位置(末位或首位)分類,分類中再按特殊位置(或特殊元素)優(yōu)先的策略分步完成;如果正面分類較多,可采用間接法求解. (2)要注意數(shù)字“0”不能排在兩

5、位數(shù)字或兩位數(shù)字以上的數(shù)的最高位.,跟蹤訓練1 從0,2中選一個數(shù)字,從1,3,5中選兩個數(shù)字,組成無重復數(shù)字的三位數(shù),其中奇數(shù)的個數(shù)為 A.24 B.18 C.12 D.6,√,解析 由于題目要求是奇數(shù),那么對于此三位數(shù)可以分成兩種情況;奇偶奇,偶奇奇. 如果是第一種奇偶奇的情況,可以從個位開始分析(3種情況),之后十位(2種情況),最后百位(2種情況),共12種; 如果是第二種情況偶奇奇:個位(3種情況),十位(2種情況),百位(不能是0,一種情況),共6種,因此總共有12+6=18(種)情況.故選B.,答案,解析,例2 高三年級的三個班到甲、乙、丙、丁四個工廠進行社會實踐,其中工

6、廠甲必須有班級去,每班去何工廠可自由選擇,則不同的分配方案有 A.16種 B.18種 C.37種 D.48種,√,類型二 選(抽)取與分配問題,答案,解析,解析 方法一 (直接法) 以甲工廠分配班級情況進行分類,共分為三類:第一類,三個班級都去甲工廠,此時分配方案只有1種情況;第二類,有兩個班級去甲工廠,剩下的班級去另外三個工廠,其分配方案共有33=9(種);第三類,有一個班級去甲工廠,另外兩個班級去其他三個工廠,其分配方案共有333=27(種). 綜上所述,不同的分配方案有1+9+27=37(種). 方法二 (間接法) 先計算3個班級自由選擇去何工廠的總數(shù),再扣除甲工廠無人去的情況,即4

7、44-333=37(種)方案.,反思與感悟 解決抽取(分配)問題的方法 (1)當涉及對象數(shù)目不大時,一般選用列舉法、樹狀圖法、框圖法或者圖表法. (2)當涉及對象數(shù)目很大時,一般有兩種方法:①直接使用分類加法計數(shù)原理或分步乘法計數(shù)原理.一般地,若抽取是有順序的就按分步進行;若是按對象特征抽取的,則按分類進行.②間接法:去掉限制條件,計算所有的抽取方法數(shù),然后減去所有不符合條件的抽取方法數(shù)即可.,跟蹤訓練2 3個不同的小球放入5個不同的盒子,每個盒子至多放一個小球,共有多少種方法?,解 (以小球為研究對象)分三步來完成: 第一步:放第一個小球有5種選擇; 第二步:放第二個小球有4種選擇; 第三步

8、:放第三個小球有3種選擇, 由分步乘法計數(shù)原理得,總方法數(shù)N=543=60.,解答,例3 (1)將3種作物全部種植在如圖所示的5塊試驗田中,每塊種植一種作物,且相鄰的試驗田不能種同一種作物,則不同的種植方法共有_____種.,類型三 涂色與種植問題,42,答案,解析,解析 分別用a,b,c代表3種作物,先安排第一塊田,有3種方法,不妨設放入a,再安排第二塊田,有兩種方法b或c,不妨設放入b,第三塊也有2種方法a或c. (1)若第三塊田放c:,第四、五塊田分別有2種方法,共有22=4(種)方法. (2)若第三塊田放a:,第四塊有b或c兩種方法, ①若第四塊放c:,第五塊有2種方法; ②若第四塊放

9、b:,第五塊只能種作物c,共1種方法. 綜上,共有32(22+2+1)=42(種)方法.,(2)將紅、黃、藍、白、黑五種顏色涂在如圖所示“田”字形的4個小方格內,每格涂一種顏色,相鄰兩格涂不同的顏色,如果顏色可以反復使用,共有多少種不同的涂色方法?,解 第1個小方格可以從5種顏色中任取一種顏色涂上,有5種不同的涂法. ①當?shù)?個、第3個小方格涂不同顏色時,有43=12(種)不同的涂法,第4個小方格有3種不同的涂法,由分步乘法計數(shù)原理可知有5123=180(種)不同的涂法. ②當?shù)?個、第3個小方格涂相同顏色時,有4種涂法,由于相鄰兩格不同色,因此,第4個小方格也有4種不同的涂法,由分步乘法計數(shù)

10、原理可知有544=80(種)不同的涂法. 由分類加法計數(shù)原理可得共有180+80=260(種)不同的涂法.,解答,引申探究 本例(2)中的區(qū)域改為如圖所示,其他條件均不變,則不同的涂法共有多少種?,解答,解 依題意,可分兩類情況:①④不同色;①④同色. 第一類:①④不同色,則①②③④所涂的顏色各不相同,我們可將這件事情分成4步來完成. 第一步涂①,從5種顏色中任選一種,有5種涂法; 第二步涂②,從余下的4種顏色中任選一種,有4種涂法; 第三步涂③與第四步涂④時,分別有3種涂法和2種涂法. 于是由分步乘法計數(shù)原理得,不同的涂法為5432=120(種).,第二類:①④同色,則①②③不同色,我們可將

11、涂色工作分成三步來完成. 第一步涂①④,有5種涂法;第二步涂②,有4種涂法;第三步涂③,有3種涂法. 于是由分步乘法計數(shù)原理得,不同的涂法有543=60(種). 綜上可知,所求的涂色方法共有120+60=180(種).,反思與感悟 解決涂色(種植)問題的一般思路 涂色問題一般是綜合利用兩個計數(shù)原理求解,有幾種常用方法: (1)按區(qū)域的不同,以區(qū)域為主分步計數(shù),用分步乘法計數(shù)原理分析. (2)以顏色為主分類討論,適用于“區(qū)域、點、線段”等問題,用分類加法計數(shù)原理分析. (3)將空間問題平面化,轉化為平面區(qū)域的涂色問題. 種植問題按種植的順序分步進行,用分步乘法計數(shù)原理計數(shù)或按種植品種恰當選取情況

12、分類,用分類加法計數(shù)原理計數(shù).,跟蹤訓練3 如圖所示,將一個四棱錐的每一個頂點染上一種顏色,并使同一條棱上的兩個端點異色,如果只有5種顏色可供使用,則不同染色方法的總數(shù)為_______.,答案,解析,420,解析 按照S→A→B→C→D的順序進行染色,按照A,C是否同色分類: 第一類,A,C同色,則有54313=180(種)不同的染色方法. 第二類,A,C不同色,則有54322=240(種)不同的染色方法. 根據(jù)分類加法計數(shù)原理,共有180+240=420(種)不同的染色方法.,達標檢測,1.有A,B兩種類型的車床各一臺,現(xiàn)有甲、乙、丙三名工人,其中甲、乙都會操作兩種車床,丙只會操作A種車床,

13、要從這三名工人中選兩名分別去操作這兩種車床,則不同的選派方法有 A.6種 B.5種 C.4種 D.3種,解析 不同的選派情況可分為3類: 若選甲、乙,有2種方法; 若選甲、丙,有1種方法; 若選乙、丙,有1種方法.根據(jù)分類加法計數(shù)原理知,不同的選派方法有2+1+1=4(種).,答案,解析,√,1,2,3,4,5,答案,解析,2.用0,1,…,9這10個數(shù)字,可以組成有重復數(shù)字的三位數(shù)的個數(shù)為 A.243 B.252 C.261 D.648,解析 0,1,2,…,9共能組成91010=900(個)三位數(shù),其中無重復數(shù)字的三位數(shù)有998=648(個),所以有重復數(shù)字的三位數(shù)有900-6

14、48=252(個).,√,1,2,3,4,5,答案,解析,3.某班有3名學生準備參加校運會的100米、200米、跳高、跳遠四項比賽,如果每班每項限報1人,則這3名學生的參賽的不同方法有 A.24種 B.48種 C.64種 D.81種,解析 由于每班每項限報1人,故當前面的學生選了某項之后,后面的學生不能再報,由分步乘法計數(shù)原理,共有432=24(種)不同的參賽方法.,√,1,2,3,4,5,答案,解析,4.火車上有10名乘客,沿途有5個車站,乘客下車的可能方式有 A.510種 B.105種 C.50種 D.500種,√,1,2,3,4,5,解析 分10步. 第1步:考慮第1名乘客下車的

15、所有可能有5種; 第2步:考慮第2名乘客下車的所有可能有5種; …; 第10步:考慮第10名乘客下車的所有可能有5種. 故共有乘客下車的可能方式 =510(種).,1,2,3,4,5,,答案,解析,5.如圖,用4種不同的顏色涂入圖中的矩形A,B,C,D中,要求相鄰的矩形涂色不同,則不同的涂法有______種.,解析 A有4種涂法,B有3種涂法,C有3種涂法,D有3種涂法,共有4333=108(種)涂法.,1,2,3,4,5,108,1.分類加法計數(shù)原理與分步乘法計數(shù)原理是兩個最基本、也是最重要的原理,是解答后面將要學習的排列、組合問題,尤其是較復雜的排列、組合問題的基礎. 2.應用分類加法計數(shù)原理要求分類的每一種方法都能把事件獨立完成;應用分步乘法計數(shù)原理要求各步均是完成事件必須經(jīng)過的若干彼此獨立的步驟. 3.一般是先分類再分步,分類時要設計好標準,設計好分類方案,防止重復和遺漏. 4.若正面分類,種類比較多,而問題的反面種類比較少時,則使用間接法會簡單一些.,規(guī)律與方法,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!