《2020高中數(shù)學(xué)蘇教版選修21課件:第2章 圓錐曲線與方程 2.2(一)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020高中數(shù)學(xué)蘇教版選修21課件:第2章 圓錐曲線與方程 2.2(一)(31頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、1 2.2.2橢圓的幾何性質(zhì)(一)精 品 數(shù) 學(xué) 課 件2020 學(xué) 年 蘇 教 版第2章2.2.2橢圓的幾何性質(zhì)(一)學(xué)習(xí)目標(biāo)1.根據(jù)橢圓的方程研究曲線的幾何性質(zhì),并正確地畫出它的圖形.2.根據(jù)幾何條件求出曲線方程,并利用曲線的方程研究它的性質(zhì),畫圖.1 預(yù)習(xí)導(dǎo)學(xué) 挑戰(zhàn)自我,點(diǎn)點(diǎn)落實(shí)2 課堂講義 重點(diǎn)難點(diǎn),個(gè)個(gè)擊破3 當(dāng)堂檢測(cè) 當(dāng)堂訓(xùn)練,體驗(yàn)成功知識(shí)鏈接答:(1)范圍:axa,byb;(2)對(duì)稱性:橢圓關(guān)于x軸、y軸、原點(diǎn)都對(duì)稱;(3)特殊點(diǎn):頂點(diǎn)A1(a,0),A2(a,0),B1(0,b),B2(0,b).預(yù)習(xí)導(dǎo)引1.橢圓的幾何性質(zhì)焦點(diǎn)的位置焦點(diǎn)在x軸上焦點(diǎn)在y軸上圖形標(biāo)準(zhǔn)方程范圍,頂點(diǎn)
2、,軸長(zhǎng)短軸長(zhǎng) ,長(zhǎng)軸長(zhǎng)axabybbxbayaA1(a,0),A2(a,0)B1(0,b),B2(0,b)A1(0,a),A2(0,a)B1(b,0),B2(b,0)2b2a焦點(diǎn)焦距 F1F2 對(duì)稱性對(duì)稱軸:對(duì)稱中心:離心率e x軸、y軸原點(diǎn)(0,1)2.離心率的作用當(dāng)橢圓的離心率越 ,則橢圓越扁;當(dāng)橢圓離心率越 ,則橢圓越接近于圓.接近于1接近于0要點(diǎn)一橢圓的幾何性質(zhì)例1求橢圓9x216y2144的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)、離心率、焦點(diǎn)和頂點(diǎn)坐標(biāo).橢圓的長(zhǎng)軸長(zhǎng)和短軸長(zhǎng)分別是2a8和2b6,又知焦點(diǎn)在x軸上,四個(gè)頂點(diǎn)坐標(biāo)分別是A1(4,0),A2(4,0),B1(0,3)和B2(0,3).規(guī)律方法解決此
3、類問題的方法是將所給方程先化為標(biāo)準(zhǔn)形式,然后根據(jù)方程判斷出橢圓的焦點(diǎn)在哪個(gè)坐標(biāo)軸上,再利用a,b,c之間的關(guān)系和定義,求橢圓的基本量.跟蹤演練1求橢圓m2x24m2y21(m0)的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)、焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)和離心率.要點(diǎn)二由橢圓的幾何性質(zhì)求方程例2求滿足下列各條件的橢圓的標(biāo)準(zhǔn)方程.(1)已知橢圓的中心在原點(diǎn),焦點(diǎn)在y軸上,若其離心率為 ,焦距為8;解由題意知,2c8,c4,從而b2a2c248,規(guī)律方法在求橢圓方程時(shí),要注意根據(jù)題目條件判斷焦點(diǎn)所在的坐標(biāo)軸,從而確定方程的形式;若不能確定焦點(diǎn)所在的坐標(biāo)軸,則應(yīng)進(jìn)行討論,然后列方程(組)確定a,b.解所求橢圓的方程為標(biāo)準(zhǔn)方程,又橢圓過點(diǎn)(
4、3,0),點(diǎn)(3,0)為橢圓的一個(gè)頂點(diǎn).當(dāng)橢圓的焦點(diǎn)在x軸上時(shí),(3,0)為右頂點(diǎn),則a3,當(dāng)橢圓的焦點(diǎn)在y軸上時(shí),(3,0)為右頂點(diǎn),則b3,要點(diǎn)三求橢圓的離心率例3如圖所示,F(xiàn)1,F(xiàn)2分別為橢圓的左,右焦點(diǎn),橢圓上點(diǎn)M的橫坐標(biāo)等于右焦點(diǎn)的橫坐標(biāo),其縱坐標(biāo)等于短半軸長(zhǎng)的 ,求橢圓的離心率.解設(shè)橢圓的長(zhǎng)半軸、短半軸、半焦距長(zhǎng)分別為a,b,c.則MF1F2為直角三角形.整理得3c23a22ab.規(guī)律方法求橢圓離心率的方法:若a和c不能直接求出,則看是否可利用條件得到a和c的齊次等式關(guān)系,然后整理成 的形式,并將其視為整體,就變成了關(guān)于離心率e的方程,進(jìn)而求解.跟蹤演練3如圖所示,橢圓的中心在原點(diǎn)
5、,焦點(diǎn)F1,F(xiàn)2在x軸上,A,B是橢圓的頂點(diǎn),P是橢圓上一點(diǎn),且PF1x軸,PF2AB,求此橢圓的離心率.如題圖所示,則有F1(c,0),F(xiàn)2(c,0),A(0,b),B(a,0),直線PF1的方程為xc,又PF2AB,PF1F2AOB.1.橢圓以兩條坐標(biāo)軸為對(duì)稱軸,一個(gè)頂點(diǎn)是(0,13),另一個(gè)頂點(diǎn)是(10,0),則焦點(diǎn)坐標(biāo)為_.解析由題意知橢圓焦點(diǎn)在y軸上,且a13,b10,2.若橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,焦距為2,離心率為 ,則橢圓的標(biāo)準(zhǔn)方程為_.3.若一個(gè)橢圓長(zhǎng)軸的長(zhǎng)度、短軸的長(zhǎng)度和焦距成等差數(shù)列,則該橢圓的離心率是_.解析由題意有2a2c2(2b),即ac2b,又c2a2b2,消去b整理得5c23a22ac,即5e22e30,解析由題意可得PF2F1F2,課堂小結(jié)1.已知橢圓的方程討論性質(zhì)時(shí),若不是標(biāo)準(zhǔn)形式,應(yīng)先化成標(biāo)準(zhǔn)形式.2.根據(jù)橢圓的幾何性質(zhì),可以求橢圓的標(biāo)準(zhǔn)方程,其基本思路是“先定型,再定量”,常用的方法是待定系數(shù)法.在橢圓的基本量中,能確定類型的量有焦點(diǎn)、頂點(diǎn),而不能確定類型的量有長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)、離心率e、焦距.3.求橢圓的離心率要注意函數(shù)與方程的思想、數(shù)形結(jié)合思想的應(yīng)用.