影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

2020版高考數(shù)學一輪復習 12.2 古典概型與幾何概型課件 理 北師大版.ppt

上傳人:tia****nde 文檔編號:14458419 上傳時間:2020-07-21 格式:PPT 頁數(shù):49 大?。?.61MB
收藏 版權(quán)申訴 舉報 下載
2020版高考數(shù)學一輪復習 12.2 古典概型與幾何概型課件 理 北師大版.ppt_第1頁
第1頁 / 共49頁
2020版高考數(shù)學一輪復習 12.2 古典概型與幾何概型課件 理 北師大版.ppt_第2頁
第2頁 / 共49頁
2020版高考數(shù)學一輪復習 12.2 古典概型與幾何概型課件 理 北師大版.ppt_第3頁
第3頁 / 共49頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學一輪復習 12.2 古典概型與幾何概型課件 理 北師大版.ppt》由會員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學一輪復習 12.2 古典概型與幾何概型課件 理 北師大版.ppt(49頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、12.2古典概型與幾何概型,1.基本事件的特點 (1)任何兩個基本事件是的. (2)任何事件(除不可能事件)都可以表示成的和. 2.古典概型 (1)定義:具有以下兩個特點的概率模型稱為古典概率模型,簡稱古典概型. 有限性:試驗中所有可能出現(xiàn)的基本事件 . 等可能性:每個基本事件出現(xiàn)的可能性.,知識梳理,考點自診,互斥,基本事件,只有有限個,相等,知識梳理,考點自診,3.幾何概型 (1)定義:如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的_____(面積或體積)成比例,那么稱這樣的概率模型為幾何概率模型,簡稱為幾何概型. (2)特點:無限性:在一次試驗中,可能出現(xiàn)的結(jié)果有無限多個; 等可能性:每個結(jié)

2、果的發(fā)生具有等可能性. (3)公式:P(A)= . 4.隨機模擬方法 使用計算機或者其他方式進行的模擬試驗,以便通過這個試驗求出隨機事件的概率的近似值的方法就是隨機模擬方法.,長度,知識梳理,考點自診,1.任一隨機事件的概率都等于構(gòu)成它的每一個基本事件概率的和. 2.求試驗的基本事件數(shù)及事件A包含的基本事件數(shù)的方法有:列舉法、列表法和樹狀圖法. 3.與面積有關(guān)的幾何概型,若已知圖形不明確,可將兩個變量分別作為一個點的橫坐標和縱坐標,這樣基本事件就構(gòu)成了平面上的一個區(qū)域,即可借助平面區(qū)域解決問題.,1.判斷下列結(jié)論是否正確,正確的畫“”,錯誤的畫“”. (1

3、)在一次試驗中,其基本事件的發(fā)生一定是等可能的.() (2)在幾何概型定義中的區(qū)域可以是線段、平面圖形、立體圖形.() (3)與面積有關(guān)的幾何概型的概率與幾何圖形的形狀有關(guān).() (5)隨機模擬方法是以事件發(fā)生的頻率估計概率.(),知識梳理,考點自診,,,,,,知識梳理,考點自診,C,2.(2018全國2,理8)我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)的和”,如30=7+23.在不超過30的素數(shù)中,隨機選取兩個不同的數(shù),其和等于30的概率是(),知識梳理,考點自診,3.(2018河南信陽二模)某同學先后投擲一枚骰子兩次,第一

4、次向上的點數(shù)記為x,第二次向上的點數(shù)記為y,在直角坐標系xOy中,以(x,y)為坐標的點落在直線2x-y=1上的概率為(),A,解析:由題意知本題是一個古典概型, 試驗發(fā)生包含的事件是先后擲兩次骰子,共有66=36種結(jié)果,滿足條件的事件是(x,y)為坐標的點落在直線2x-y=1上, 即當x=1,y=1時;當x=2,y=3時;當x=3,y=5時,共有3種結(jié)果, 根據(jù)古典概型的概率公式得到以(x,y)為坐標的點落在直線2x-y=1上的概率為 .故選A.,知識梳理,考點自診,4.如圖,正方形ABCD內(nèi)的圖形來自中國古代的太極圖.正方形內(nèi)切圓中的黑色部分和白色部分關(guān)于正方形的中心成中心對稱.在

5、正方形內(nèi)隨機取一點,則此點取自黑色部分的概率是(),B,知識梳理,考點自診,知識梳理,考點自診,5.在-1,1上隨機地取一個數(shù)k,則事件“直線y=kx與圓(x-5)2+y2=9相交”發(fā)生的概率為.,考點1,考點2,考點3,古典概型的概率,C,C,考點4,考點5,考點6,考點1,考點2,考點3,考點4,考點5,考點6,考點1,考點2,考點3,思考求古典概型的概率的一般思路是怎樣的?對與順序相關(guān)的問題怎樣處理? 解題心得求有關(guān)古典概型的概率問題的解題策略: 1.求古典概型的概率的思路是:先求出試驗的基本事件的總數(shù)和事件A包含的基本事件的個數(shù),再代入古典概型的概率公式. 2.對與順序相關(guān)的問題處理方

6、法為:若把順序看作有區(qū)別,則在求試驗的基本事件的總數(shù)和事件A包含的基本事件的個數(shù)時都看作有區(qū)別,反之都看作沒區(qū)別.,考點4,考點5,考點6,考點1,考點2,考點3,C,C,考點4,考點5,考點6,考點1,考點2,考點3,考點4,考點5,考點6,考點1,考點2,考點3,古典概型的交匯問題(多考向) 考向1古典概型與平面向量的交匯,C,思考如何把兩個向量的夾角的范圍問題轉(zhuǎn)化成與求概率的基本事件有關(guān)的問題?,考點4,考點5,考點6,考點1,考點2,考點3,考向2古典概型與解析幾何的交匯 例3將一顆骰子先后投擲兩次分別得到點數(shù)a,b,則直線ax+by=0與圓(x-2)2+y2=2有公共點的概率為.,思

7、考如何把直線與圓有公共點的問題轉(zhuǎn)化成與概率的基本事件有關(guān)的問題?,考點4,考點5,考點6,考點1,考點2,考點3,考向3古典概型與函數(shù)的交匯 例4設(shè)a2,4,b1,3,函數(shù)f(x)= ax2+bx+1. (1)求f(x)在區(qū)間(-,-1上是減函數(shù)的概率; (2)從f(x)中隨機抽取兩個,求它們在(1,f(1))處的切線互相平行的概率.,考點4,考點5,考點6,考點1,考點2,考點3,考點4,考點5,考點6,考點1,考點2,考點3,解題心得1.由兩個向量的數(shù)量積公式,得出它們的夾角的余弦值的表達式,由夾角的范圍得出點數(shù)m和n的關(guān)系mn,然后分別求m=n和mn對應的事件個數(shù),從而也清楚了基本事件的

8、個數(shù)就是點數(shù)m和n組成的點的坐標數(shù). 2.直線與圓有公共點,即圓心到直線的距離小于或等于半徑,由此得出ab,則滿足ab的基本事件的個數(shù)就能求出來,從而轉(zhuǎn)化成與概率的基本事件有關(guān)的問題. 3.f(x)在區(qū)間(-,-1上是減函數(shù)可轉(zhuǎn)化成開口向上的二次函數(shù)f(x)的圖像的對稱軸與x軸的交點的橫坐標大于或等于-1,從而得出ba,從而不難得出ba包含的基本事件數(shù).因此也轉(zhuǎn)化成了與概率的基本事件有關(guān)的問題.,思考如何把f(x)在區(qū)間(-,-1上是減函數(shù)的問題轉(zhuǎn)換成與概率的基本事件有關(guān)的問題?,考點4,考點5,考點6,考點1,考點2,考點3,(2)(2018陜西寶雞檢測)已知a、b、c為集合A=1,2,3,

9、4,5中三個不同的數(shù),通過如圖所示程序框圖給出的算法輸出一個整數(shù)a,則輸出的數(shù)a=5的概率是.,B,考點4,考點5,考點6,考點1,考點2,考點3,(3)設(shè)集合A=x|x2-3x-10<0,xZ,從集合A中任取兩個元素a,b,且ab0,則方程 表示焦點在x軸上的雙曲線的概率為. (4)已知關(guān)于x的二次函數(shù)f(x)=ax2-4bx+1,設(shè)a-1,1,2,3,4,5,b-2,-1,1,2,3,4,則f(x)在區(qū)間1,+)內(nèi)是增加的概率為.,考點4,考點5,考點6,考點1,考點2,考點3,考點4,考點5,考點6,考點1,考點2,考點3,考點4,考點5,考點6,考點1,考點2,考點3,考點4,

10、考點5,考點6,考點1,考點2,考點3,與長度、角度有關(guān)的幾何概型 例5(1)某公司的班車在7:30,8:00,8:30發(fā)車,小明在7:50至8:30之間到達發(fā)車站乘坐班車,且到達發(fā)車站的時刻是隨機的,則他等車時間不超過10分鐘的概率是 () (2)如圖,四邊形ABCD為矩形,AB= ,BC=1,在DAB內(nèi)任作射線AP,則射線AP與線段BC有公共點的概率為.,B,考點4,考點5,考點6,考點1,考點2,考點3,解析: (1)這是幾何概型問題,總的基本事件空間如圖所示,共40分鐘,等車時間不超過10分鐘的時間段為:7:50至8:00和8:20至8:30,共20分鐘,故他等車時間不超過10分鐘的

11、概率為 (2)因為在DAB內(nèi)任作射線AP,則等可能基本事件為“在DAB內(nèi)作射線AP”,所以它的所有等可能事件所在的區(qū)域H是DAB,當射線AP與線段BC有公共點時,射線AP落在CAB內(nèi)(包括邊界),區(qū)域h為CAB,所以射線AP與線段BC有公共點的概率為,考點4,考點5,考點6,考點1,考點2,考點3,考點4,考點5,考點6,思考如何確定幾何概型的概率是用長度或角度的比來求? 解題心得解答幾何概型問題的關(guān)鍵在于弄清題中的考察對象和對象的活動范圍.(1)當考察對象為點,點的活動范圍在線段上時用線段長度比計算;(2)當考察對象為線時,一般用角度比計算.,考點1,考點2,考點3,(2) 如圖所示,在平面

12、直角坐標系內(nèi),射線OT落在30角的終邊上,任作一條射線OA,則射線OA落在yOT內(nèi)的概率為.,C,考點4,考點5,考點6,考點1,考點2,考點3,考點4,考點5,考點6,考點1,考點2,考點3,考點4,考點5,考點6,與面積、體積有關(guān)的幾何概型 例6(1)(2018全國1,理10)下圖來自古希臘數(shù)學家希波克拉底所研究的幾何圖形,此圖由三個半圓構(gòu)成,三個半圓的直徑分別為直角三角形ABC的斜邊BC,直角邊AB,AC.ABC的三邊所圍成的區(qū)域記為,黑色部分記為,其余部分記為.在整個圖形中隨機取一點,此點取自,,的概率分別記為p1,p2,p3,則() A.p1=p2B.p1=p3 C.p2=p3D.p

13、1=p2+p3 (2)(2018四川梓潼檢測)已知圓柱OO的底面半徑為1,高為6,若區(qū)域M表示圓柱OO及其內(nèi)部,區(qū)域N表示圓柱OO內(nèi)到下底面的距離大于1的點組成的集合,若向區(qū)域M中隨機投一點,則所投的點落入?yún)^(qū)域N中的概率為(),A,C,考點1,考點2,考點3,考點4,考點5,考點6,考點1,考點2,考點3,考點4,考點5,考點6,思考求與面積、體積有關(guān)的幾何概型的基本思路是什么? 解題心得求與面積、體積有關(guān)的幾何概型的基本思路:用圖形準確表示出試驗的全部結(jié)果所構(gòu)成的區(qū)域,由題意將已知條件轉(zhuǎn)化為事件A滿足的區(qū)域,在圖形中畫出事件A發(fā)生的區(qū)域,然后用公式,考點1,考點2,考點3,考點4,考點5,考

14、點6,對點訓練4(1)(2018四川成都月考)如圖所示,在邊長為1的正方形OABC中任取一點P,則點P恰好取自陰影部分的概率為() (2)(2018河南一模)一只蜜蜂在一個正方體箱子里面自由飛行,若蜜蜂在飛行過程中始終保持在該正方體內(nèi)切球范圍內(nèi)飛行,稱其為“安全飛行”,則蜜蜂“安全飛行”的概率為.,C,考點1,考點2,考點3,考點4,考點5,考點6,考點1,考點2,考點3,考點4,考點5,考點6,考點1,考點2,考點3,考點4,考點5,考點6,幾何概型與非幾何知識的綜合,A,A,考點1,考點2,考點3,考點4,考點5,考點6,考點1,考點2,考點3,考點4,考點5,考點6,思考如何把看似與幾

15、何概型無關(guān)的知識轉(zhuǎn)化成與幾何概型有關(guān)的問題? 解題心得處理幾何概型與非幾何知識的綜合問題的關(guān)鍵是,通過轉(zhuǎn)化,將某一事件所包含的基本事件用“長度”“角度”“面積”“體積”等表示出來.如把這兩個變量分別作為一個點的橫坐標和縱坐標,這樣基本事件就構(gòu)成了平面上的一個區(qū)域,進而轉(zhuǎn)化為面積的度量來解決.,考點1,考點2,考點3,考點4,考點5,考點6,B,A,考點1,考點2,考點3,考點4,考點5,考點6,考點1,考點2,考點3,考點4,考點5,考點6,考點1,考點2,考點3,考點4,考點5,考點6,幾何概型的應用(模擬方法) 例8從區(qū)間0,1隨機抽取2n個數(shù)x1,x2,,xn,y1,y2,,yn,構(gòu)成n

16、個數(shù)對(x1,y1),(x2,y2),,(xn,yn),其中兩數(shù)的平方和小于1的數(shù)對共有m個,則用隨機模擬的方法得到的圓周率的近似值為(),C,考點1,考點2,考點3,考點4,考點5,考點6,解析:如圖,兩數(shù)的平方和小于1的數(shù)對所在的區(qū)域為圖中陰影部分(不含邊界),n個數(shù)對所在的區(qū)域為邊長為1的正方形.,考點1,考點2,考點3,考點4,考點5,考點6,思考依據(jù)題意如何用隨機模擬的方法求圓周率的近似值? 解題心得將看作未知數(shù)表示出四分之一的圓面積,根據(jù)幾何概型的概率公式,四分之一的圓面積與矩形面積之比等于m與n之比,從而用m,n表示出的近似值.,考點1,考點2,考點3,考點4,考點5,考點6,對

17、點訓練6(2018寧夏銀川四模)A地的天氣預報顯示,A地在今后的三天中,每一天有強濃霧的概率為30%,現(xiàn)用隨機模擬的方法估計這三天中至少有兩天有強濃霧的概率,先利用計算器產(chǎn)生09之間整數(shù)值的隨機數(shù),并用0,1,2,3,4,5,6表示沒有強濃霧,用7,8,9表示有強濃霧,再以每3個隨機數(shù)作為一組,代表三天的天氣情況,產(chǎn)生了如下20組隨機數(shù): 402978191925273842812479569683 231357394027506588730113537779 則這三天中至少有兩天有強濃霧的概率近似為(),D,考點1,考點2,考點3,考點4,考點5,考點6,解析:由題意知模擬這三天中至少有兩天

18、有強濃霧的結(jié)果,經(jīng)隨機模擬產(chǎn)生的20組隨機數(shù),在20組隨機數(shù)中表示三天中恰有兩天有強濃霧的有978,479,588,779,共4組隨機數(shù), 所求概率為,考點1,考點2,考點3,考點4,考點5,考點6,1.古典概型計算三步曲: 第一,判斷試驗是不是等可能的;第二,本試驗的基本事件有多少個;第三,事件A是什么,它包含的基本事件有多少個. 2.確定古典概型基本事件的方法: (1)當基本事件總數(shù)較少時,可列舉計算; (2)利用計數(shù)原理、排列與組合求基本事件的個數(shù). 3.轉(zhuǎn)化思想在幾何概型中的應用: 很多幾何概型往往要通過一定的手段才能轉(zhuǎn)化到幾何度量值的計算上來,在解決問題時,要善于根據(jù)問題的,考點1,考點2,考點3,考點4,考點5,考點6,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!