《江西省2013年高考數學第二輪復習 專題一 常以客觀題形式考查的幾個問題第3講 不等式、線性規(guī)劃 文》由會員分享,可在線閱讀,更多相關《江西省2013年高考數學第二輪復習 專題一 常以客觀題形式考查的幾個問題第3講 不等式、線性規(guī)劃 文(8頁珍藏版)》請在裝配圖網上搜索。
1、專題一 常以客觀題形式考查的幾個問題第3講 不等式、線性規(guī)劃
真題試做
1.(2012·天津高考,文4)已知a=21.2,b=-0.8,c=2log52,則a,b,c的大小關系為( ).
A.c<b<a B.c<a<b
C.b<a<c D.b<c<a
2.(2012·湖南高考,文7)設a>b>1,c<0,給出下列三個結論:
①>;②ac<bc;③logb(a-c)>loga(b-c).
其中所有的正確結論的序號是( ).
A.① B.①② C.②③ D.①②③
3.(2012·浙江高考,文9)若正數x,y滿足x+3y=
2、5xy,則3x+4y的最小值是( ).
A. B. C.5 D.6
4.(2012·山東高考,文6)設變量x,y滿足約束條件則目標函數z=3x-y的取值范圍是( ).
A. B.
C.[-1,6] D.
5.(2012·江西高考,文11)不等式>0的解集是__________.
考向分析
通過高考試卷可分析出:在不等式中,主要熱點是線性規(guī)劃知識、均值不等式及解不等式,單純對不等式的性質考查并不多.解不等式主要涉及一元二次不等式、簡單的分式不等式、對數和指數不等式等,并且以一元二次不等式為主,重在考查等價轉化能力和基本的解不
3、等式的方法;均值不等式的考查重在對代數式的轉化過程及適用條件,等號成立條件的檢驗,常用來求最值或求恒成立問題中參數的取值范圍;線性規(guī)劃問題是高考的一個必考內容,主要還是強調用數形結合的方法來尋求最優(yōu)解的過程,體現(xiàn)了數學知識的實際綜合應用,不等式知識的考查以選擇題、填空題為主,也蘊含在解答題中,題目難度為中低檔,但考查很廣泛,需引起重視.
熱點例析
熱點一 不等式的性質及應用
【例1】(1)設0<a<b,則下列不等式中正確的是( ).
A.a<b<<
B.a<<<b
C.a<<b<
D.<a<<b
(2)某車間分批生產某種產品,每批的生產準備費用為800元.若每批生產x件,
4、則平均倉儲時間為天,且每件產品每天的倉儲費用為1元.為使平均到每件產品的生產準備費用與倉儲費用之和最小,每批應生產產品( ).
A.60件 B.80件 C.100件 D.120件
規(guī)律方法 (1)弄清每一個不等式性質的條件和結論,注意條件的變化對結論的影響.
(2)判斷不等式是否成立時,常利用不等式的性質、基本不等式、函數的單調性等知識以及特殊值法.
(3)應用基本不等式求最值時一定要注意基本不等式成立的條件,必要時需要對相關的式子進行變形、構造常數等以符合基本不等式應用的條件,此外還要特別注意等號成立的條件,以確保能否真正取得相應的最值.
變式訓練1
5、 已知log2 a+log2 b≥1,則3a+9b的最小值為__________.
熱點二 不等式的解法
【例2】已知不等式ax2-3x+6>4的解集為{x|x<1或x>b}.
(1)求a,b;
(2)解不等式>0(c為常數).
規(guī)律方法 (1)解一元二次不等式的基本思路:先化為一般形式ax2+bx+c>0(a>0),再求相應一元二次方程ax2+bx+c=0(a>0)的根,最后根據相應二次函數圖象與x軸的位置關系,確定一元二次不等式的解集.
(2)解簡單的分式、指數、對數不等式的基本思想是利用相關知識轉化為整式不等式(一般為一元二次不等式)求解.
(3)解含“f”的不等式,首先要
6、確定f(x)的單調性,然后根據單調性進行轉化、求解.
(4)解含參數不等式的難點在于對參數的恰當分類,關鍵是找到對參數進行討論的原因.確定好分類標準,從而層次清晰地求解.
變式訓練2 已知f(x)=則f(x)>-1的解集為( ).
A.(-∞,-1)∪(0,+∞)
B.(-∞,-1)∪(0,1)∪(1,+∞)
C.(-1,0)∪(1,+∞)
D.(-1,0)∪(0,1)
熱點三 線性規(guī)劃問題
【例3】(1)在直角坐標平面上,不等式組所表示的平面區(qū)域的面積為,則t的值為( ).
A.-或 B.-5或1
C.1 D.
(2)已知平面直角
7、坐標系xOy上的區(qū)域D由不等式組給定.若M(x,y)為D上的動點,點A的坐標為(,1),則z=·的最大值為( ).
A.4 B.3 C.4 D.3
規(guī)律方法 1.線性規(guī)劃問題的三種題型
一是求最值;二是求區(qū)域面積;三是知最優(yōu)解或可行域確定參數的值或取值范圍.
2.解答線性規(guī)劃問題的步驟及應注意的問題
解決線性規(guī)劃問題首先要作出可行域,再注意目標函數所表示的幾何意義,數形結合找到目標函數達到最值時可行域的頂點(或邊界上的點),但要注意作圖一定要準確,整點問題要驗證解決.
變式訓練3 不等式組表示的是一個直角三角形圍成的平面區(qū)域,則k=_________
8、_.
思想滲透
1.分類討論思想的含義
分類討論思想就是當問題所給的對象不能進行統(tǒng)一研究時,需要把研究對象按某個標準分類,然后對每一類分別研究得出結論,最后綜合各類結果得到整個問題的解答.實質上,分類討論是“化整為零,各個擊破,再積零為整”的解題策略.
2.本部分內容中分類討論常見題型
(1)由數學運算要求引起的分類討論;
(2)由參數的變化引起的分類討論.
3.常見誤區(qū)
利用均值不等式求最值容易忘記等號成立的條件.
設不等式組表示的平面區(qū)域為D.若指數函數y=ax的圖象上存在區(qū)域D內的點,則a的取值范圍是( ).
A.(1,3] B.[2,3] C.
9、(1,2] D.[3,+∞)
解析:作出不等式組表示的平面區(qū)域D,如圖中陰影部分所示.
由得交點A(2,9).
對于y=ax的圖象,當0<a<1時,沒有點在區(qū)域D內;
當a>1時,y=ax的圖象恰好經過A點時,由a2=9,得a=3.
由題意知,需滿足a2≤9,解得1<a≤3.
答案:A
1.不等式|x-5|+|x+3|≥10的解集是( ).
A.[-5,7] B.[-4,6]
C.(-∞,-5]∪[7,+∞) D.(-∞,-4]∪[6,+∞)
2.設x,y滿足約束條件若目標函數z=ax+by(a>0,b>0
10、)的最大值為12,則+的最小值為( ).
A. B. C. D.4
3.某運輸公司有12名駕駛員和19名工人,有8輛載重量為10噸的甲型卡車和7輛載重量為6噸的乙型卡車.某天需運往A地至少72噸的貨物,派用的每輛車需滿載且只運送一次.派用的每輛甲型卡車需配2名工人,運送一次可得利潤450元;派用的每輛乙型卡車需配1名工人,運送一次可得利潤350元.該公司合理計劃當天派用兩類卡車的車輛數,可得最大利潤為( ).
A.4 650元 B.4 700元
C.4 900元 D.5 000元
4.(2012·江西九江模擬,文9)設二元一次不等
11、式組所表示的平面區(qū)域為M,則使函數y=x(a>0,a≠1)的圖象經過區(qū)域M的實數a的取值范圍是( ).
A. B.
C.[2,9] D.[,9]
5.設x,y為實數,若4x2+y2+xy=1,則2x+y的最大值是__________.
6.已知函數f(x)=ax3-x2+cx+d(a,c,d∈R)滿足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求a,c,d的值;
(2)若h(x)=x2-bx+-,解不等式f′(x)+h(x)<0.
參考答案
命題調研·明晰考向
真題試做
1.A 解析:a=21.2,b=-0.8=20.8,
12、
∵21.2>20.8>1,
∴a>b>1,c=2log52=log54<1.
∴c<b<a.
2.D 解析:①-=,
∵a>b>1,c<0,∴>0.
即->0.故①正確.
②考察函數y=xc(c<0),可知為單調減函數.
又∵a>b>1,∴ac<bc.故②正確.
③∵a>b>1,c<0,∴l(xiāng)ogb(a-c)>0,loga(b-c)>0,
∴=.
∵>1,>1,
∴>1,故③正確.
3.C 解析:∵x+3y=5xy,∴+=1.
∴3x+4y=(3x+4y)×1=(3x+4y)
=+++≥+2=5,
當且僅當=,即x=1,y=時等號成立.
4.A 解析:作出可行域
13、如圖所示.
目標函數z=3x-y可轉化為y=3x-z,作l0:3x-y=0,在可行域內平移l0,可知在A點處z取最小值-,在B點處z取最大值6,故選A.
5.(-3,2)∪(3,+∞) 解析:不等式>0可化為(x-2)(x-3)(x+3)>0,
由穿根法(如圖)得,
所求不等式的解集為(-3,2)∪(3,+∞).
精要例析·聚焦熱點
熱點例析
【例1】(1)B 解析:由a=<<=b,排除A,D,
又∵<=b,排除C,選B.
(2)B 解析:由題意得平均每件產品生產準備費用為元.
倉儲費用為元,得費用和為+≥2=20(元).
當=時,即x=80時等號成立.
【變式
14、訓練1】18 解析:∵3a>0,9b=32b>0,
∴根據基本不等式得3a+9b≥2=.
∵log2a+log2b≥1,∴有a>0,b>0,log2 ab≥1,∴ab≥2.
再由基本不等式得a+2b≥2=2≥2=4.
當且僅當a=2b=2,即a=2,b=1時等號成立.
∴≥2=18.
∴當a=2,b=1時,3a+9b取得最小值18.
【例2】解:(1)由題知1,b為方程ax2-3x+2=0的兩根,即解得
(2)不等式等價于(x-c)(x-2)>0,當c>2時,解集為{x|x>c或x<2},當c<2時,解集為{x|x>2或x<c},當c=2時,解集為{x|x≠2,x∈R}.
【
15、變式訓練2】B 解析:當x>0時,f(x)=>-1,
∴-2x+1>-x2,即x2-2x+1>0,解得x>0且x≠1.
當x<0時,f(x)=>-1,即-x>1,解得x<-1.
故x∈(-∞,-1)∪(0,1)∪(1,+∞),選B.
【例3】(1)C 解析:不等式組所表示的平面區(qū)域如圖中陰影部分所示.
由解得交點B(t,t+2).
在y=x+2中,令x=0得y=2,即直線y=x+2與y軸的交點為C(0,2).
由平面區(qū)域的面積S==,得t2+4t-5=0,解得t=1或t=-5(不合題意,舍去),故選C.
(2)C 解析:z=·=(x,y)·(,1)=x+y.
由
畫出可
16、行域,如圖陰影部分所示.
作直線l0:y=-x,平移直線l0至l1的位置時,z取得最大值,此時l1過點(,2),故zmax=×+2=4.
【變式訓練3】0或- 解析:如圖,在平面直角坐標系中畫出對應的平面區(qū)域,要使不等式組表示的區(qū)域是一個直角三角形,應使其中的兩條邊界直線垂直,當直線y=kx+1與直線x=0垂直,即在圖中l(wèi)1的位置,圍成的區(qū)域是直角三角形AOB,這時k=0;當直線y=kx+1與直線y=2x垂直時,即在圖中l(wèi)2的位置時,圍成的區(qū)域是直角三角形ACO,此時k=-,故k的值等于0或-.
創(chuàng)新模擬·預測演練
1.D 解析:方法一:令y=|x-5|+|x+3|,
則函數
17、圖象為:
令y=10,即|x-5|+|x+3|=10,得x=-4或x=6,
結合圖象可知|x-5|+|x+3|≥10的解集為(-∞,-4]∪[6,+∞).
方法二:將x=6代入可知適合,故排除C;將x=0代入可知不適合,故排除A,B.
2.A 解析:不等式表示的平面區(qū)域如圖中陰影部分所示,
當直線ax+by=z(a>0,b>0)過直線x-y+2=0與直線3x-y-6=0的交點(4,6)時,
目標函數z=ax+by(a>0,b>0)取得最大值12,
即4a+6b=12,2a+3b=6,所以+=·=+≥+2=,當且僅當a=b時等號成立,故選A.
3.C 解析:由題意設派用甲
18、型、乙型卡車的數量分別為x,y,
則利潤z=450x+350y,得約束條件
畫出可行域可知目標函數在直線x+y=12和直線2x+y=19的交點(7,5)處取得最大值.
故最大利潤為450×7+350×5=4 900元.
4.B 解析:平面區(qū)域M如圖中陰影部分所示.
易得A(2,10),C(3,8),B(1,9).要使函數y=x的圖象經過區(qū)域M,則必有>1.當函數圖象過點B時,1=9,即=9,當函數圖象過點C時,3=8,即=2.故實數a的取值范圍為.故選B.
5. 解析:設2x+y=m,則y=m-2x,代入4x2+y2+xy=1,得6x2-3mx+m2-1=0,由Δ=9m2-24
19、(m2-1)≥0,得m2≤,所以-≤m≤,所以2x+y的最大值為.
6.解:(1)∵f(0)=0,∴d=0.
∵f′(x)=ax2-x+c,f′(1)=0,
∴a+c=.
∵f′(x)≥0在R上恒成立,即ax2-x+c≥0恒成立,
∴ax2-x+-a≥0恒成立.
顯然當a=0時,上式不恒成立.
∴a≠0.
∴
即即
解得a=,c=.
∴a,c,d的值分別為,,0.
(2)∵a=c=,
∴f′(x)=x2-x+.
f′(x)+h(x)<0,
即x2-x++x2-bx+-<0,
即x2-x+<0,
即(x-b)<0,
當b>時,解集為;
當b<時,解集為;
當b=時,解集為.