3、,即(x22)ex0, 因為ex0, 所以x220,,(2)若函數(shù)f(x)在(1,1)上單調(diào)遞增,求a的取值范圍,解因為函數(shù)f(x)在(1,1)上單調(diào)遞增, 所以f(x)0對x(1,1)都成立 因為f(x)(2xa)ex(x2ax)ex x2(a2)xaex, 所以x2(a2)xaex0對x(1,1)都成立 因為ex0, 所以x2(a2)xa0對x(1,1)都成立,,對x(1,1)都成立,,題型二利用導(dǎo)數(shù)研究函數(shù)零點問題,,師生共研,當(dāng)x(0,e)時,f(x)0,f(x)在(e,)上單調(diào)遞增,,f(x)的極小值為2.,則(x)x21(x1)(x1), 當(dāng)x(0,1)時,(x)0,(x)在(0,
4、1)上單調(diào)遞增; 當(dāng)x(1,)時,(x)<0,(x)在(1,)上單調(diào)遞減 x1是(x)的唯一極值點,且是極大值點,因此x1也是(x)的最大值點,,又(0)0,結(jié)合y(x)的圖象(如圖),,當(dāng)m0時,函數(shù)g(x)有且只有一個零點,函數(shù)零點問題一般利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值等性質(zhì),并借助函數(shù)圖象,根據(jù)零點或圖象的交點情況,建立含參數(shù)的方程(或不等式)組求解,實現(xiàn)形與數(shù)的和諧統(tǒng)一,跟蹤訓(xùn)練2(2018紹興質(zhì)測)已知函數(shù)f(x) x3ax23xb. (1)當(dāng)a2,b0時,求f(x)在0,3上的值域;,得f(x)x24x3(x1)(x3) 當(dāng)x(0,1)時,f(x)0,故f(x)在(0,1)上單調(diào)遞
5、增; 當(dāng)x(1,3)時,f(x)<0,故f(x)在(1,3)上單調(diào)遞減,(2)對任意的b,函數(shù)g(x)|f(x)| 的零點不超過4個,求a的取值范圍,解由題意得f(x)x22ax3,4a212. 當(dāng)0,即a23時,f(x)0,f(x)在R上單調(diào)遞增,滿足題意; 當(dāng)0,即a23時,f(x)0有兩根, 設(shè)兩根為x1,x2,且x1
6、為常數(shù)) (1)若函數(shù)yf(x)與函數(shù)yg(x)在x1處有相同的切線,求實數(shù)的值;,因為在x1處有相同的切線,,設(shè)H(x)f(x)g(x),,因為x1,所以(H(x))0,即H(x)單調(diào)遞減, 又因為H(1)0,所以H(x)0,即H(x)單調(diào)遞減, 而H(1)0,所以H(x)0,即f(x)g(x),求解不等式恒成立或有解時參數(shù)的取值范圍問題,一般常用分離參數(shù)的方法,但是如果分離參數(shù)后對應(yīng)的函數(shù)不便于求解其最值,或者求解其函數(shù)最值較煩瑣時,可采用直接構(gòu)造函數(shù)的方法求解,跟蹤訓(xùn)練3已知函數(shù)f(x) ax2ln x(x0,aR) (1)若a2,求點(1,f(1))處的切線方程;,f(1)1,f(1)
7、1,所求的切線方程為yx.,(2)若不等式f(x) 對任意x0恒成立,求實數(shù)a的值,當(dāng)a0時,f(x)<0,,故此時不合題意;,g(x)在(0,1)上單調(diào)遞增,在(1,)上單調(diào)遞減, g(x)g(1)0, 即1ln xx0, 故1ln aa0,a1.,課時作業(yè),2,PART TWO,,基礎(chǔ)保分練,1,2,3,4,5,6,,1,2,3,4,5,6,,1,2,3,4,5,6,當(dāng)x變化時,f(x),f(x)的變化情況如下表:,,,1,2,3,4,5,6,,,2.已知函數(shù)f(x)axex(aR),g(x) . (1)求函數(shù)f(x)的單調(diào)區(qū)間;,,1,2,3,4,5,6,解因為f(x)aex,xR.
8、當(dāng)a0時,f(x)0時,令f(x)0,得xln a. 由f(x)0,得f(x)的單調(diào)遞增區(qū)間為(,ln a); 由f(x)0時,f(x)的單調(diào)遞增區(qū)間為(,ln a),單調(diào)遞減區(qū)間為(ln a,).,(2)x(0,),使不等式f(x)g(x)ex成立,求a的取值范圍.,,1,2,3,4,5,6,解因為x(0,),使不等式f(x)g(x)ex,,,當(dāng)x在區(qū)間(0,)內(nèi)變化時,h(x),h(x)隨x變化的變化情況如下表:,1,2,3,4,5,6,,1,2,3,4,5,6,3.已知函數(shù)f(x)x33x2ax2,曲線yf(x)在點(0,2)處的切線與x軸交點的橫坐標為2. (1)求a的值;,,1,2,
9、3,4,5,6,解f(x)3x26xa,f(0)a. 曲線yf(x)在點(0,2)處的切線方程為yax2.,所以a1.,(2)證明:當(dāng)k<1時,曲線yf(x)與直線ykx2只有一個交點.,,1,2,3,4,5,6,,1,2,3,4,5,6,證明由(1)知,f(x)x33x2x2. 設(shè)g(x)f(x)kx2x33x2(1k)x4. 由題設(shè)知1k0. 當(dāng)x0時,g(x)3x26x1k0,g(x)單調(diào)遞增, g(1)k10時,令h(x)x33x24, 則g(x)h(x)(1k)xh(x). h(x)3x26x3x(x2),h(x)在(0,2)上單調(diào)遞減,在(2,)上單調(diào)遞增,,,1,2,3,4,5,
10、6,所以g(x)h(x)h(2)0. 所以g(x)0在(0,)上沒有實根. 綜上,g(x)0在R上有唯一實根, 即曲線yf(x)與直線ykx2只有一個交點.,4.設(shè)函數(shù)f(x) ax2(a3)x3,其中aR,函數(shù)f(x)有兩個極值點x1,x2,且0 x1<1. (1)求實數(shù)a的取值范圍;,,1,2,3,4,5,6,,解由題意可知,f(x)x2axa3,x1,x2為f(x)0的兩個根, 所以a24(a3)0,得a6或a<2.,1,2,3,4,5,6,,1,2,3,4,5,6,即2
11、(x)|<9.,,1,2,3,4,5,6,,證明由0 x1<1,x1
12、1,2,3,4,5,6,證明方法一令h(x)f(x)gt(x),,,當(dāng)t0時,,,,當(dāng)x(0, )時,h(x)<0,,當(dāng)x( ,)時,h(x)0,,所以h(x)在(0,)內(nèi)的最小值是h( )0. 故當(dāng)x0時,f(x)gt(x)對任意正實數(shù)t成立.,,1,2,3,4,5,6,方法二對任意固定的x0,,,,,,,,,則h(t) (x ),,由h(t)0,得tx3. 當(dāng)00; 當(dāng)tx3時,h(t)<0,,因此當(dāng)x0時,f(x)gt(x)對任意正實數(shù)t成立.,,1,2,3,4,5,6,,有且僅有一個正實數(shù)x0,使得g8(x0)gt(x0)對任意正實數(shù)t成立.,,1,2,3,4,5,6,,,即(x0
13、2)2(x04)0, 又因為x00, 不等式成立的充要條件是x02, 所以有且僅有一個正實數(shù)x02, 使得g8(x0)gt(x0)對任意正實數(shù)t成立.,,,,6.已知函數(shù)f(x)xaln x,aR. (1)討論函數(shù)f(x)在定義域內(nèi)的極值點的個數(shù);,1,2,3,4,5,6,拓展沖刺練,,當(dāng)a0時,f(x)0在(0,)上恒成立, 函數(shù)f(x)在(0,)上單調(diào)遞增, 所以f(x)在(0,)上沒有極值點. 當(dāng)a0時,由f(x)0,得xa, 所以f(x)在(0,a)上單調(diào)遞減,在(a,)上單調(diào)遞增, 即f(x)在xa處有極小值,無極大值. 所以當(dāng)a0時,f(x)在(0,)上沒有極值點, 當(dāng)a0時,f(x)在(0,)上有一個極值點.,1,2,3,4,5,6,,(2)設(shè)g(x) ,若不等式f(x)g(x)對任意x2,e恒成立,求a的取值范圍.,1,2,3,4,5,6,,1,2,3,4,5,6,不等式f(x)g(x)對任意x2,e恒成立,,當(dāng)1ae,即ae1時,h(x)在2,e上單調(diào)遞減, 所以h(x)的最小值為h(e),,當(dāng)1a2,即a1時,h(x)在2,e上單調(diào)遞增, 所以h(x)的最小值為h(2),,,1,2,3,4,5,6,,1,2,3,4,5,6,當(dāng)22, 即1