影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

廣東省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題七 概率與統(tǒng)計第1講 計數(shù)原理、二項式定理 理

上傳人:lisu****2020 文檔編號:149521211 上傳時間:2022-09-07 格式:DOC 頁數(shù):4 大?。?.28MB
收藏 版權(quán)申訴 舉報 下載
廣東省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題七 概率與統(tǒng)計第1講 計數(shù)原理、二項式定理 理_第1頁
第1頁 / 共4頁
廣東省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題七 概率與統(tǒng)計第1講 計數(shù)原理、二項式定理 理_第2頁
第2頁 / 共4頁
廣東省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題七 概率與統(tǒng)計第1講 計數(shù)原理、二項式定理 理_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《廣東省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題七 概率與統(tǒng)計第1講 計數(shù)原理、二項式定理 理》由會員分享,可在線閱讀,更多相關(guān)《廣東省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題七 概率與統(tǒng)計第1講 計數(shù)原理、二項式定理 理(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題七 概率與統(tǒng)計第1講 計數(shù)原理、二項式定理 真題試做 1.(2012·浙江高考,理6)若從1,2,3,…,9這9個整數(shù)中同時取4個不同的數(shù),其和為偶數(shù),則不同的取法共有(  ). A.60種 B.63種 C.65種 D.66種 2.(2012·重慶高考,理4)8的展開式中常數(shù)項為(  ). A. B. C. D.105 3.(2012·浙江高考,理14)若將函數(shù)f(x)=x5表示為f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…,a5為實數(shù),則a3=__________. 4.(

2、2012·廣東高考,理10)6的展開式中x3的系數(shù)為__________.(用數(shù)字作答) 考向分析 高考中對本節(jié)注重基礎(chǔ)知識和基本解題方法、規(guī)律的考查,伴隨運算能力的考查,基本都為中等難度試題.預(yù)測下一步對排列組合會更加注重分類、分步計算原理的考查,注重與概率的聯(lián)系,更要加強對本節(jié)知識的理解深度;二項式定理的應(yīng)用可能會對x的n次多項式(1+ax)n的考查升溫,尤其是利用(1+ax)n的展開式考查賦值思想. 熱點例析 熱點一 分類加法和分步乘法計數(shù)原理 【例1】方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同.在所有這些方程所表示的曲線中,

3、不同的拋物線共有(  ). A.60條 B.62條 C.71條 D.80條 規(guī)律方法 “分類”與“分步”的區(qū)別:關(guān)鍵是看事件的完成情況,如果每種方法都能將事件完成是分類;如果必須要連續(xù)若干步才能將事件完成是分步,分類要用分類加法計數(shù)原理將種數(shù)相加;分步要用分步乘法計數(shù)原理將種數(shù)相乘. 變式訓(xùn)練1 從A,B,C,D,E五名學(xué)生中選出四名分別參加數(shù)學(xué)、物理、化學(xué)、英語競賽,其中A不參加物理、化學(xué)競賽,則不同的參賽方案種數(shù)為(  ). A.24 B.48 C.72 D.120 熱點二 求展開式中的指定項 【例2】在6的二項展開式中,常數(shù)項等于_

4、_________. 規(guī)律方法 運用二項式定理一定要牢記通項Tr+1=Can-rbr,其中n∈N*,r∈N,r≤n.注意與(b+a)n的展開式雖然相同,但其展開式中的某一項是不相同的,所以一定要注意順序問題. 變式訓(xùn)練2 若n的展開式中第3項與第7項的二項式系數(shù)相等,則該展開式中的系數(shù)為__________. 熱點三 求展開式中的各項系數(shù)的和 【例3】若(2x+)4=a0+a1x+a2x2+a3x3+a4x4,則(a0+a2+a4)2-(a1+a3)2的值為(  ). A.1 B.-1 C.0 D.2 規(guī)律方法 求展開式中系數(shù)和問題,往往根據(jù)展開式的特點賦值.

5、 變式訓(xùn)練3 若(2x-1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則a0+a1+a2+a3+a4+a5=__________. 思想滲透 分類討論思想在排列組合中的應(yīng)用 由實際意義引起的分類討論在排列組合問題中比較常見,這是因為分類、分步是解決排列組合問題的兩個指導(dǎo)思想.一般采取先分類再分步的策略,分類時要先確定分類標(biāo)準,是根據(jù)特殊元素來分類還是根據(jù)特殊位置來分類,然后再解決每一類中的分步問題,最后匯總.在分類時注意標(biāo)準的選取,做到不重不漏. 【典型例題】將數(shù)字1,2,3,4填入標(biāo)號為1,2,3,4的四個方格里,每格填一個數(shù)字,則每個方格的標(biāo)號與所填的數(shù)字均不同的填

6、法有________種. 解析:分三類:第一格填2,則第二格有A種填法,第三、四格自動對號入座,不能自由排列; 第一格填3,則第三格有A種填法,第二、四格自動對號入座,不能自由排列; 第一格填4,則第四格有A種填法,第二、三格自動對號入座,不能自由排列; 共計有3A=9種填法. 答案:9 1.(2012·天津高考,理5)在5的二項展開式中,x的系數(shù)為(  ). A.10 B.-10 C.40 D.-40 2.(2012·廣東實驗高中模擬,理6)已知n∈N*,若對任意實數(shù)x都有xn=a0+a1(x-n)+a2(x-n)2+…+an(x-n)n,則an-

7、1的值為(  ). A.n2 B.nn C. D. 3.(2012·陜西高考,理8)兩人進行乒乓球比賽,先贏3局者獲勝,決出勝負為止,則所有可能出現(xiàn)的情形(各人輸贏局次的不同視為不同情形)共有(  ). A.10種 B.15種 C.20種 D.30種 4.(2012·山東高考,理11)現(xiàn)有16張不同的卡片,其中紅色、黃色、藍色、綠色卡片各4張.從中任取3張,要求這3張卡片不能是同一種顏色,且紅色卡片至多1張.不同取法的種數(shù)為(  ). A.232 B.252 C.472 D.484 5.(2012·遼寧

8、高考,理5)一排9個座位坐了3個三口之家,若每家人坐在一起,則不同的坐法種數(shù)為(  ). A.3×3! B.3×(3!)3 C.(3!)4 D.9! 6.設(shè)a∈Z,且0≤a<13,若512 012+a能被13整除,則a=(  ). A.0 B.1 C.11 D.12 7.(2012·廣東深圳高級中學(xué)期末,理5)值域為{2,5,10},其對應(yīng)關(guān)系為y=x2+1的函數(shù)的個數(shù)(  ). A.1 B.27 C.39 D.8 8.一袋中有除顏色外其他均相同的6個球,其中3個黑球,紅、白、藍球各1個,現(xiàn)從中取出4個球排成一

9、列,共有多少種不同的排法? 參考答案 命題調(diào)研·明晰考向 真題試做 1.D 解析:和為偶數(shù)共有3種情況,取4個數(shù)均為偶數(shù)的取法有=1(種),取2奇數(shù)2偶數(shù)的取法有=60(種),取4個數(shù)均為奇數(shù)的取法有=5(種),故不同的取法共有1+60+5=66(種). 2.B 解析:二項式8的通項為Tr+1=()8-r(2)-r=2-r,令=0得r=4,所以二項展開式的常數(shù)項為T5=2-4C=,故選B. 3.10 解析:由x5=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5可得, 可解得 4.20 解析:Tr+1=·(x2)r·6-r=·x3r-6,∴要求展開式中x3的系數(shù)

10、,即3r-6=3,∴r=3,即T4=·x3=20x3,∴x3的系數(shù)為20. 精要例析·聚焦熱點 熱點例析 【例1】B 解析:因為a,b不能為0,先確定a,b的值有種,則c有種,即所形成的拋物線有=80條.當(dāng)b=±2時,b2的值相同,重復(fù)的拋物線有=9條;當(dāng)b=±3時,b2的值相同,重復(fù)的拋物線有=9條,所以不同的拋物線共有=62條. 【變式訓(xùn)練1】C 解析:第一類,不選A,此時參賽方案有種;第二類,選A,此時先選元素(人),有種,再排元素有種方法,所以此種情況下參賽方法共有種.所以共有=24+48=72(種).選C. 【例2】 -160 解析:6的二項展開式中的常數(shù)項為·(x)3·3

11、=-160. 【變式訓(xùn)練2】 56 解析:∵Cn2=Cn6,∴n=8. Tr+1=r=, 當(dāng)8-2r=-2時,r=5. ∴系數(shù)為=56. 【例3】 A 解析:(a0+a2+a4)2-(a1+a3)2=(a0+a1+a2+a3+a4)(a0-a1+a2-a3+a4)=(2+)4·(2-)4=1. 【變式訓(xùn)練3】 1 創(chuàng)新模擬·預(yù)測演練 1.D 解析:Tr+1=Cr5(2x2)5-rr=(-1)r25-rCr5x10-3r, ∴當(dāng)10-3r=1時,r=3. ∴(-1)325-3C35=-40. 2.A 解析:xn=[n+(x-n)]n,根據(jù)二項式通項公式得an-1=Cn=n2

12、.正確選項為A. 3.C 解析:甲獲勝有三種情況,第一種共打三局,甲全勝,此時,有一種情形;第二種共打四局,甲第四局獲勝且前三局中只有兩局獲勝,此時,共有C=3種情形;第三種共打五局,甲第五局獲勝且前四局只有兩局獲勝,此時,共有C=6種情形,所以甲贏共有10種情況,同理乙贏也有10種情形,故選C. 4.C 解析:完成這件事可分為兩類,第一類3張卡片顏色各不相同共有=256種;第二類3張卡片有兩張同色且不是紅色卡片共有=216種,由分類加法計數(shù)原理得共有472種,故選C. 5.C 解析:完成這件事可以分為兩步,第一步排列三個家庭的相對位置,有種排法;第二步排列每個家庭中的三個成員,共有種排

13、法.由乘法原理可得不同的坐法種數(shù)有,故選C. 6.D 解析:∵52能被13整除, ∴512 012可化為(52-1)2 012,其二項式系數(shù)為Tr+1=·(-1)r. 故(52-1)2 012被13除余數(shù)為·(-1)2 012=1,則當(dāng)a=12時,512 012+12被13整除. 7.B 解析:分別由x2+1=2,x2+1=5,x2+1=10解得x=±1,x=±2,x=±3,由函數(shù)的定義,定義域中元素的選取分四種情況: ①取三個元素:有=8種; ②取四個元素:先從±1,±2,±3三組中選取一組,再從剩下的兩組中選兩個元素,故共有=12種; ③取五個元素:C=6種; ④取六個元素:1種. 由分類計數(shù)原理,共有8+12+6+1=27種. 8.解:分三類:若取1個黑球,和另三個球排4個位置,有=24種不同的排法; 若取2個黑球,從另三個球中選2個排4個位置,2個黑球是相同的,自動進入,不需要排列,即有=36種不同的排法; 若取3個黑球,從另三個球中選1個排4個位置,3個黑球是相同的,自動進入,不需要排列,即有=12種不同的排法; 所以有24+36+12=72種不同的排法.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!