《《線性變換和矩陣》PPT課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《《線性變換和矩陣》PPT課件.ppt(30頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、7.3 線性變換和矩陣,一、內(nèi)容分布 7.3.1 線性變換的矩陣 7.3.2 坐標(biāo)變換 7.3.3 矩陣唯一確定線性變換 7.3.4 線性變換在不同基下的矩陣----相似矩陣 二、教學(xué)目的: 1熟練地求出線性變換關(guān)于給定基的矩陣,以及給定n 階矩陣和基,求出關(guān)于這個(gè)基的矩陣為的線性變換 2由向量關(guān)于給定基的坐標(biāo),求出()關(guān)于這個(gè)基的坐標(biāo) 3已知線性變換關(guān)于某個(gè)基的矩陣,熟練地求出關(guān)于另一個(gè)基的矩陣. 三、重點(diǎn)難點(diǎn): 線性變換和矩陣之間的相互轉(zhuǎn)換, 坐標(biāo)變換, 相似矩陣.,7.3.1 線性變換的矩陣,現(xiàn)在設(shè)V是數(shù)域F上一個(gè)n維向量空間,令是V的一個(gè)線性變換,取定V的一個(gè)基 令,,設(shè),n
2、 階矩陣A 叫做線性變換關(guān)于基 的矩陣. 顯然,A的第j 列就是(j)關(guān)于基 的坐標(biāo). 上面的表達(dá)常常寫(xiě)出更方便的形式:,,(1),由此可知: 取定F上n維向量空間V的一個(gè)基之后,對(duì)于V的每一個(gè)線性變換,都有唯一確定的n階矩陣A與之對(duì)應(yīng)這樣一來(lái),從L(V)到Mn(F)必然存在著一個(gè)對(duì)應(yīng)關(guān)系----映射,不妨記為,練習(xí):教材P284---習(xí)題第1題,7.3.2 坐標(biāo)變換,設(shè)V 是數(shù)域F上一個(gè)n 維向量空間, 是V 的一個(gè)基, 關(guān)于這個(gè)基的坐標(biāo)是 而()的坐標(biāo)是 問(wèn): 和 之間有什么關(guān)系呢?,,設(shè),因?yàn)槭蔷€性變換,所以,(2)
3、,將(1)代入(2)得,最后,等式表明, 的坐標(biāo)所組成的列是,綜合上面所述, 我們得到坐標(biāo)變換公式:,定理7.3.1 令V是數(shù)域F上一個(gè)n 維向量空間,是V的一個(gè)線性變換,而關(guān)于V的一個(gè)基 的矩陣是,如果V中向量關(guān)于這個(gè)基的坐標(biāo)是 ,而()的坐標(biāo)是 ,,那么,,例,例在空間 內(nèi)取從原點(diǎn)引出的兩個(gè)彼此正交的單位向量 作為 的基.令是將 的每一向量旋轉(zhuǎn)角的一個(gè)旋轉(zhuǎn). 是 的一個(gè)線性變換.我們有,所以關(guān)于基 的矩陣是,設(shè) ,它關(guān)于基 的坐標(biāo)是 ,而 的坐標(biāo)是 .那么,例3 令是數(shù)域上一個(gè)n維向量空間, 是的一個(gè)位似
4、,那么關(guān)于任意基的矩陣是 特別地,的單位變換關(guān)于任意基的矩陣是單位矩 陣;零變換關(guān)于任意基的矩陣是零矩陣,7.3.3 矩陣唯一確定線性變換,引理7.3.2 設(shè)V是數(shù)域F上一個(gè)n 維向量空間, 是V的一個(gè)基,那么對(duì)于V 中任意n個(gè)向量 ,有且僅有 V 的一個(gè)線性變換,使得:,,我們證明,是V的一個(gè)線性變換。設(shè),那么,于是,設(shè) 那么,,,這就證明了是V的一個(gè)線性變換。線性變換顯然滿足定理所要求的條件:,,如果是V的一個(gè)線性變換,且,,那么對(duì)于任意,從而 ,,定理7.3.3 設(shè)V 是數(shù)域 F 上一個(gè)n 維向量空間, 是V 的一個(gè)基,對(duì)于V 的每一個(gè)線性變換,
5、令關(guān)于基 的矩陣A與它對(duì)應(yīng),這樣就得到V 的全體線性變換所成的集合 L(V)到F上全體n 階矩陣所成的集合 的一個(gè)雙射,并且如果 ,而 , 則 (3) (4),證 設(shè)線性變換關(guān)于基 的矩陣是A。那么 是 的一個(gè)映射。,是F上任意一個(gè)n階矩陣。令,由引理7.3.2,存在唯一的 使,反過(guò)來(lái),設(shè),顯然關(guān)于基 的矩陣就是A. 這就證明了如上建立的映射是 的雙射.,設(shè) 我們有,由于是線性變換, 所以,因此,所以關(guān)于基 的矩陣就是AB。(7)式成立,至于(6)式成立,是顯然的。,推論7.3.4 設(shè)數(shù)域F上n 維
6、向量空間V 的一個(gè)線性變換關(guān)于V 的一個(gè)取定的基的矩陣是A,那么可逆必要且只要A可逆,并且 關(guān)于這個(gè)基的矩陣就是 .,我們需要對(duì)上面的定理7.3.1和定理7.3.3的深刻意義加以說(shuō)明:,1. 取定n 維向量空間V的一個(gè)基之后, 在映射: 之下, (作為向量空間),研究一個(gè)抽象的線性變換, 就可以轉(zhuǎn)化為研究一個(gè)具體的矩陣. 也就是說(shuō), 線性變換就是矩陣.以后,可以通過(guò)矩陣來(lái)研究線性變換,也可以通過(guò)線性變換來(lái)研究矩陣.,2. 我們知道, 數(shù)域F上一個(gè)n 維向量空間V 同構(gòu)于 , V上的線性變換,轉(zhuǎn)化為 上一個(gè)具體的變換:,也就是說(shuō), 線性變換都具有上述形式
7、.,,,引言: 一般地線性變換關(guān)于基的矩陣與基的選擇有關(guān),同一線性變換在V中的兩個(gè)不同基下的矩陣一般不同. 為了利用矩陣研究線性變換,顯然需要討論線性變換在不同基下的矩陣間的關(guān)系。,,,,,,,,,,,,,,,,,,,引例:設(shè) ,且 關(guān)于基 , 的矩陣為 求關(guān)于基 的矩陣 分析:本題不能直接用定義做,因 的對(duì)應(yīng)關(guān)系不清楚, 由定義是求B使 B, 又由題知 ,而 與 間的關(guān)系易得,因而可通過(guò)上述已知轉(zhuǎn)化一下。,,,,,,,,,解:設(shè) B, 因 ,所以 其中 . 于是,,,,,,,,,,,,,所以,設(shè)線性變換關(guān)于基
8、 的矩陣是 A , 關(guān)于基 的矩陣是 B , 由基 到基 的過(guò)渡矩陣T, 于是有:,定理7.3.5,,7.3.4 線性變換在不同基下的矩陣 相似矩陣,(1),(2),(3),由(3)得,比較兩端,得,證明:,定義:設(shè) A,B 是數(shù)域 F 上兩個(gè) n 階矩陣. 如果存在F上一個(gè) n 階可逆矩陣 T 使等式成立,那么就說(shuō)B與A相似,記作: .,n階矩陣的相似關(guān)系具有下列性質(zhì):,1. 自反性:每一個(gè)n階矩陣A都與它自己相似,因?yàn)?2. 對(duì)稱性:如果 ,那么 ;因?yàn)橛?事實(shí)上,由 得,因此: 線性變換在
9、不同基下的矩陣是相似的. 反過(guò)來(lái),一對(duì)相似矩陣可以是同一個(gè)線 性變換在不同基下的矩陣.(證明略----教材 P283P284),容易證明,NOTE: 這兩個(gè)式子的作用在于方便運(yùn)算,例4 設(shè)A、B都是n階矩陣,且A可逆. 證明: ABBA.,問(wèn)題:Th7.3.5說(shuō)明, 關(guān)于V的不同基的矩陣是相似的;且所有彼此相似的矩陣可看成同一線性變換在不同基下的矩陣。這自然會(huì)提出問(wèn)題: 滿足什么條件下,可以并且如何選取V的基,使線性變換關(guān)于這個(gè)基的矩陣盡可能簡(jiǎn)單?或曰:方陣滿足什么條件時(shí),如何在彼此相似的矩陣中選取一個(gè)方陣,使得它最簡(jiǎn)單?這是因?yàn)楹?jiǎn)單方陣研究起來(lái)方便一些。后幾節(jié)討論,什么樣的方陣與對(duì)角方陣相似,進(jìn)而尋找可逆方T,對(duì)給定的方陣A,使得 為對(duì)角形。,,,,,,,,,