《【備考2014 志鴻優(yōu)化設(shè)計(jì)】2013版中考數(shù)學(xué)總復(fù)習(xí) 基礎(chǔ)講練 第23講 視圖與投影(含答案點(diǎn)撥) 新人教版》由會(huì)員分享,可在線閱讀,更多相關(guān)《【備考2014 志鴻優(yōu)化設(shè)計(jì)】2013版中考數(shù)學(xué)總復(fù)習(xí) 基礎(chǔ)講練 第23講 視圖與投影(含答案點(diǎn)撥) 新人教版(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
第23講 視圖與投影
考綱要求
命題趨勢(shì)
1.了解平行投影和中心投影的含義及其簡(jiǎn)單的應(yīng)用.
2.會(huì)畫(huà)直棱柱、圓柱、圓錐、球的三視圖,能判斷簡(jiǎn)單物體的視圖.
3.能根據(jù)三視圖描述基本幾何體或?qū)嵨镌?,掌握?jiǎn)單幾何體表面展開(kāi)圖.
投影與視圖是中考的必考內(nèi)容,主要考查幾何體的三視圖的判定,立體圖形與它的三視圖的互相轉(zhuǎn)化,立體圖形的展開(kāi)圖、投影等.題目難度不大,主要以選擇題、填空題的形式出現(xiàn).
知識(shí)梳理
一、投影
1.投影:用光線照射物體,在某個(gè)平面上得到的______叫做物體的投影,照射光線叫做________,投影所在的平面叫做________.
2.平行投影:
2、太陽(yáng)光線可以看成________光線,像這樣的光線所形成的投影稱為平行投影.
平行投影與視圖之間的關(guān)系:當(dāng)投影線與投影面垂直時(shí),這種投影叫做________.物體的正投影稱為物體的視圖.物體的三視圖實(shí)際上就是該物體在某一平行光線(垂直于投影面的平行光線)下的________.
3.中心投影:探照燈、手電筒、路燈和臺(tái)燈的光線可以看成是從________發(fā)出的光線,像這樣的光線所形成的投影稱為_(kāi)_______.
二、視圖
1.視圖:從某一角度觀察一個(gè)物體時(shí),所看到的圖象叫做物體的一個(gè)視圖.一個(gè)物體在三個(gè)投影面內(nèi)同時(shí)進(jìn)行正投影,在正面內(nèi)得到的由前向后觀察物體的視圖,叫做________;在水
3、平面內(nèi)得到的由上向下觀察物體的視圖,叫做________;在側(cè)面內(nèi)得到由左向右觀察物體的視圖,叫做________.
2.常見(jiàn)幾何體的三種視圖:
幾何體
主視圖
左視圖
俯視圖
圓柱
長(zhǎng)方形
長(zhǎng)方形
圓
圓錐
三角形
三角形
圓和圓心
球
圓
圓
圓
3.三視圖的畫(huà)法:
(1)長(zhǎng)對(duì)正;(2)高平齊;(3)寬相等.
4.由視圖到立體圖形:
由視圖想象實(shí)物圖形時(shí)不像由實(shí)物到視圖那樣唯一確定,由一個(gè)視圖往往可以想象出多種物體.
由視圖描述實(shí)物時(shí),需了解簡(jiǎn)單的、常見(jiàn)的、規(guī)則物體的視圖,能區(qū)分類似的物體視圖的聯(lián)系與區(qū)別.如主視圖是長(zhǎng)方形,可想象出是四棱柱、三棱
4、柱、圓柱等.俯視圖是圓的可以是球、圓柱等.
自主測(cè)試
1.一個(gè)幾何體的三視圖如圖所示,那么這個(gè)幾何體是( )
2.將如圖所示表面帶有圖案的正方體沿某些棱展開(kāi)后,得到的圖形是( )
3.如圖,小紅居住的小區(qū)內(nèi)有一條筆直的小路,小路的正中間有一路燈,晚上小紅由A處徑直走到B處,她在燈光照射下的影長(zhǎng)l與行走的路程s之間的變化關(guān)系用圖象刻畫(huà)出來(lái),大致圖象是( )
4.5個(gè)棱長(zhǎng)為1的正方體組成如圖的幾何體.
(1)該幾何體的體積是__________(立方單位),表面積是__________(平方單位).
(2)畫(huà)出該幾何體的主視圖和左視圖.
考點(diǎn)一
5、、投影
【例1】如圖所示,在一間黑屋子里用一盞白熾燈照一個(gè)球,球在地面上的陰影的形狀是一個(gè)圓,當(dāng)把白熾燈向遠(yuǎn)移時(shí),圓形陰影的大小的變化情況是( )
A.越來(lái)越小 B.越來(lái)越大
C.大小不變 D.不能確定
解析:白熾燈向遠(yuǎn)移時(shí),兩條光線的夾角度數(shù)變小,所以圓形的陰影也會(huì)跟著變?。?
答案:A
方法總結(jié) 投影問(wèn)題在日常生活中隨處可見(jiàn),解答這類題時(shí)要注意分清本質(zhì)(即是中心投影還是平行投影問(wèn)題)及每種投影的特征.陽(yáng)光下的影子為平行投影,在同一時(shí)刻兩物體的影子應(yīng)在同一方向上,并且物高與影長(zhǎng)成正比;燈光下的影子為中心投影,影子應(yīng)在物體背對(duì)光的一側(cè).
觸類旁通1 如
6、圖所示,位似圖形由三角尺與其燈光照射下的中心投影組成,相似比為2:5,且三角尺的一邊長(zhǎng)為8 cm,則投影三角尺的對(duì)應(yīng)邊長(zhǎng)為( )
A.8 cm B.20 cm C.3.2 cm D.10 cm
考點(diǎn)二、立體圖形的三視圖
【例2】如圖,下列幾何體:
其中,左視圖是平行四邊形的有( )
A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)
解析:圓柱的左視圖是矩形、圓錐的左視圖是三角形、棱柱的左視圖是矩形、長(zhǎng)方體的左視圖是矩形,所以左視圖是平行四邊形的有3個(gè).
答案:B
方法總結(jié) 判斷簡(jiǎn)單物體的三視圖,要先搞清三視圖的概
7、念,再?gòu)娜齻€(gè)方向仔細(xì)觀察.三種視圖的作用:主視圖可以清晰地看到物體的長(zhǎng)和高,主要提供正面的形狀;左視圖可以分清物體的寬度和高度;俯視圖看不到物體的高度,但能分清物體的長(zhǎng)和寬.
觸類旁通2 下面簡(jiǎn)單幾何體的主視圖是( )
考點(diǎn)三、和三視圖有關(guān)的計(jì)算
【例3】一個(gè)幾何體的三視圖如圖所示,其中主視圖和左視圖都是腰長(zhǎng)為4、底邊為2的等腰三角形,則這個(gè)幾何體的側(cè)面展開(kāi)圖的面積為( )
A.2π B.π C.4π D.8π
解析:先判斷此幾何體為圓錐,側(cè)面展開(kāi)圖為扇形;再由三視圖得到扇形母線長(zhǎng)為4、弧長(zhǎng)為圓錐底面圓的周長(zhǎng);最后運(yùn)用公式S=lR=×2
8、π×4=4π.
答案:C
方法總結(jié) 由三視圖想象立體圖形時(shí),先分別根據(jù)主視圖、俯視圖和左視圖想象立體圖形的前面、上面和左側(cè)面的局部形狀,然后再綜合起來(lái)考慮整體圖形.
觸類旁通3 如圖是一個(gè)正六棱柱的主視圖和左視圖,則圖中的a=( )
A.2 B.
C.2 D.1
1.(2012四川樂(lè)山)下圖是小強(qiáng)用八塊相同的小正方體搭建的一個(gè)積木,它的左視圖是( )
2.(2012浙江衢州)長(zhǎng)方體的主視圖、俯視圖如圖所示,則其左視圖面積為( )
A.3 B.4 C.12 D.16
3.(2012四川南充)下
9、列幾何體中,俯視圖相同的是( )
A.①② B.①③ C.②③ D.②④
4.(2012廣東廣州)一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體是( )
A.四棱錐 B.四棱柱
C.三棱錐 D.三棱柱
5.(2012廣東梅州改編)春蕾數(shù)學(xué)興趣小組用一塊正方形木板在陽(yáng)光下做投影實(shí)驗(yàn),這塊正方形木板在地面上形成的投影可能是__________(寫(xiě)出符合題意的兩個(gè)圖形即可).
6.(2012內(nèi)蒙古呼和浩特)如圖是某幾何體的三視圖及相關(guān)數(shù)據(jù)(單位:cm),則該幾何體的側(cè)面積為_(kāi)_________ cm2.
7.(20
10、12四川樂(lè)山)從棱長(zhǎng)為2的正方體毛坯的一角,挖去一個(gè)棱長(zhǎng)為1的小正方體,得到一個(gè)如圖所示的零件,則這個(gè)零件的表面積是__________.
1.如圖所示,空心圓柱的左視圖是( )
2.將“創(chuàng)建文明城市”六個(gè)字分別寫(xiě)在一個(gè)正方體的六個(gè)面上,這個(gè)正方體的平面展開(kāi)圖如圖所示,那么在這個(gè)正方體中,和“創(chuàng)”相對(duì)的字是( )
A.文 B.明 C.城 D.市
3.在下列幾何體中,主視圖、左視圖與俯視圖都是相同的圓,該幾何體是( )
4.如圖所示是由一些大小相同的小立方體組成的幾何體的主視圖和左視圖,則組成這個(gè)幾何體的小立方體的個(gè)數(shù)不可能是(
11、 )
A.3 B.4 C.5 D.6
5.如圖,正方形ABCD的邊長(zhǎng)為3,以直線AB為軸,將正方形旋轉(zhuǎn)一周,所得幾何體的主視圖的周長(zhǎng)是__________.
6.如圖是由若干個(gè)大小相同的小正方體堆砌而成的幾何體,那么其三種視圖中面積最小的是__________.
7.如圖,小明在A時(shí)測(cè)得某樹(shù)的影長(zhǎng)為2 m,B時(shí)又測(cè)得該樹(shù)的影長(zhǎng)為8 m,若兩次日照的光線互相垂直,則樹(shù)的高度為_(kāi)_________m.
8.小明想利用太陽(yáng)光測(cè)量樓高,他帶著皮尺來(lái)到一棟樓下,發(fā)現(xiàn)對(duì)面墻上有這棟樓的影子,針對(duì)這種情況,他設(shè)計(jì)了一種測(cè)量方案,具體測(cè)量情況如下:
12、如示意圖,小明邊移動(dòng)邊觀察,發(fā)現(xiàn)站到點(diǎn)E處時(shí),可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時(shí),測(cè)得小明落在墻上的影子高度CD=1.2 m,CE=0.8 m,CA=30 m(點(diǎn)A,E,C在同一直線上).
已知小明的身高EF是1.7 m,請(qǐng)你幫小明求出樓高AB(結(jié)果精確到0.1 m).
參考答案
導(dǎo)學(xué)必備知識(shí)
自主測(cè)試
1.C 2.C 3.C
4.解:(1)5 22;
(2)
探究考點(diǎn)方法
觸類旁通1.B
觸類旁通2.C 幾何體主視圖的確定,可通過(guò)從正面觀察它的列數(shù),及每列最高的塊數(shù).這個(gè)幾何體從正面看有3列,從左到右每列最高塊數(shù)分別為2,1,
13、1,故選C.
觸類旁通3.B
品鑒經(jīng)典考題
1.D 左視圖從左往右,2列正方形的個(gè)數(shù)依次為2,1,
依此畫(huà)出圖形.
故選D.
2.A 由主視圖知長(zhǎng)為4,高為1,由俯視圖知長(zhǎng)為4,寬為3,則左視圖寬為3,高為1,則其面積為3.
3.C?、俚母┮晥D是,②的俯視圖是,③的俯視圖是,④的俯視圖是,故選C.
4.D 由于主視圖和左視圖為長(zhǎng)方形可得此幾何體為柱體,由俯視圖為三角形,可得為棱柱體,所以這個(gè)幾何體是三棱柱.
5.正方形、菱形(答案不唯一)
6.2π 因?yàn)楦鶕?jù)三視圖可知該幾何體為圓錐,且高為cm,母線長(zhǎng)為2 cm,底面圓的直徑為2 cm,則周長(zhǎng)即側(cè)面展開(kāi)圖的弧長(zhǎng)為2π cm,
14、所以側(cè)面積為×2π×2=2π(cm2).
7.24 挖去一個(gè)棱長(zhǎng)為1 cm的小正方體,得到的圖形與原圖形表面積相等,則表面積是2×2×6=24.
故答案為24.
研習(xí)預(yù)測(cè)試題
1.C
2.B 因“創(chuàng)”和“建”與“文”相連,有公共頂點(diǎn),故先排除;再根據(jù)不相鄰左右或上下相對(duì),知“創(chuàng)”與“明”相對(duì).
3.A 4.D 5.18 6.左視圖 7.4
8.解:如圖,過(guò)點(diǎn)D作DG⊥AB,分別交AB,EF于點(diǎn)G,H,則
EH=AG=CD=1.2,
DH=CE=0.8,DG=CA=30.
∵EF∥AB,
∴=.
由題意,知FH=EF-EH=1.7-1.2=0.5.
∴=,解得BG=18.75.
∴AB=BG+AG=18.75+1.2=19.95≈20.0,
∴樓高AB約為20.0米.
8