喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請(qǐng)放心下載,原稿可自行編輯修改=====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請(qǐng)放心下載,原稿可自行編輯修改=====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請(qǐng)放心下載,原稿可自行編輯修改=====================
Bevel gear of the latest developments in measurement technology
1 Overview
Bevel gear drive mechanism in the car, helicopter, machine tools and electric tools manufacturing industry, has been widely used. The use of different performance of the bevel gears are also different quality requirements, can be summarized including: ① a good contact area, can be a reliable torque transmission power; ② good match geometry, a smooth transfer of the movement, in order to ensure uniform load , transmission smooth, vibration small, noise low. Factories are usually small devices and dual-spot detection of rolling contact tester to control the quality of bevel gear, but in reality it is very difficult to determine accurately the performance of the bevel gear.
Bevel gear and the precision of measurement of cylindrical gears similar, can generally be classified into three types: ① Coordinate Geometry Analysis of measurement type. That is, the bevel gear as a geometric entity, its geometric elements, respectively, the geometric precision of individual measurements; Gear Measuring Center is the main measuring instruments. ② Comprehensive engagement measurement accuracy. That is, the bevel gear transmission as a component, the accuracy of their transmission, contact spots, a comprehensive measurement of the vibration noise. The measuring instruments are mainly one-sided meshing bevel gear tester, bevel gear meshing two-sided bevel gear measuring and inspection machine rolling. Bevel Gear ③ the overall measurement error. It will bevel gear transmission as a function for the realization of the geometric entities, or by coordinate measuring method in accordance with the geometric precision of a single measurement to measure the overall error of bevel gears, bevel gears to achieve a single transmission error and the geometric precision of the intrinsic link between the quality of the analysis; or by mating single measurement, the use of mesh point scan measurement of bevel gears for the overall error of measurement, has been integrated bevel gear movement accuracy, contact spots, as well as the geometric precision of the individual. Therefore, the overall error of measurement of bevel gear is a measurement of the first two methods of integration and development.
With the coordinate measuring technology, computer control and measurement technology, in recent years, the overall error of measurement of bevel gear technology research development soon. Gear Measuring Center as a result of multi-cylinder coordinates, such as multi-function measurement instrument performance, data-processing capacity, bevel gear-type coordinates of analytic geometry measurement technology, has been the development of a single geometric error of measurement to the overall error of measurement of bevel gear, improved cone gear design, processing, quality testing to determine the accuracy and the use of the forecast performance of the bevel gear, such as the level of manufacturing technology. By China's own development, based on the "control point movement - geometric measurement principle" on one side of the bevel gear meshing point scanning technology and technology development based on the overall error of the bevel gear measuring instrument, it is more towards the production of the first line, so that China Bevel Gear measurement theory, the practical application of measurement technology has been further improved and developed.
2.the main bevel gear precision measurement method and apparatus
2.1 Coordinate-style geometric measurement and analysis equipment
Machinery Exhibition into a straight bevel gear-type coordinate measuring instrument there earlier products to represented KP42-type, but the complex structure of high accuracy. Since 1990, both before and after, CNC Gear Measuring Center to the market, coordinates arc bevel gear-type geometry of measurement error is the rapid development and popularization and application. Today's market, Gear Measuring Center from abroad, whether it is Klingberg Germany's P63, or the United States Gleason / mar the GMX275, M & M's Sigma 3, have been measured with the function of bevel gear. These instruments have reached VDI / VDE level provided a space measuring uncertainty for more than 2 microns; bevel gear on the geometric error of a single test, such as pitch deviation (including single pitch deviation, the cumulative pitch deviation , total cumulative pitch deviation), tooth profile deviations (including a total deviation of tooth profile, the shape of tooth profile error, tooth profile tilt deviation) and teeth to the error (including the teeth to the total deviation, deviation of the shape of teeth to the teeth to tilt deviation) and output deviation of three-dimensional shape of tooth surface morphology map.
2.2 Integrated single-sided mesh rolling test measurement method and apparatus
Single-sided bevel gear meshing scroll detection methods have been used in production for many years. N0.513 Gleason in the United States rolling test machine as an example, in the measured single-sided bevel gear pair meshing, the simulation of its work, and to a certain degree of speed and load, adjust the V / H, for colored contact area (spot ) testing to determine the bevel gear pair under test contact conditions; through the use of acceleration sensors, pickup of vibration and noise measured on the tooth scan frequency harmonic detection. This method is "quasi-dynamic" measurement method, which bevel gear for the accuracy of detection is far from complete or accurate enough. Optical encoder used as the base point of view, to cut bevel gears for the accuracy of detection of the integrated single-sided meshing bevel gear tester, such as Germany's Klingberg PSKE900, because a single test items, in particular, it is difficult for the basis of test results Bevel Gear Machine parameters adjusted to give guidance, to improve processing quality bevel gears. Less cost-effective and therefore not much used in production.
Gleason has introduced in recent years, the Phoenix 500HCT CNC bevel gear inspection machine is rolling with a rolling test at the same time and one-sided mating tester measurement function, measurement of both the tangential bevel gear integrated error, while the number of measuring cone gear contact area, three-dimensional structure of the noise analysis. The advanced models, such products represent the contemporary level of development, although expensive, but there are individual users at home. Klingberg also similar GKC60, such as Orion Hole T50 CNC bevel gear inspection machine.
2.3Measurement error overall and equipment
The overall error of measurement of bevel gear is rotating in the same angle displacement coordinates of the order will be based on the meshing bevel gear tooth surface of the work of the detection point measured by the geometric error of all the individual integrated into a bevel gear overall error map, and on this basis, bevel gears for the completion of a single geometric precision, and accuracy of an integrated campaign bevel gear analysis of contact state deputy measurement, the use of bevel gears to achieve the performance and quality assessment and monitoring. Bevel gear and the overall error of measurement apparatus, the current can be divided into three second-class. A class of analytic geometry for coordinate measurement type, the method is divided into "point-to-point measurement" and "point of scan measurements," equipment used in two ways for CNC Gear Measuring Center, but the allocation package by the measurement different; the other for the mating-type movement measurement geometry (ie, mesh-type scan measurement point, the method for our first), the apparatus used for single-sided meshing bevel gear tester, equipped with a dedicated measurement bevel gear and measurement software package.
(1) coordinate the overall bevel gear-type point-to-point measurement error
Gear Measurement Center in, along with three-dimensional measurement of bevel gear tooth profile and tooth to the two directions, according to a pre-determined interval, the detection of the measured points of the tooth surface (usually the 5 tooth profile, tooth up 9 a total of 45 points) for the geometry error of measurement of 1.1 points. This method can be avoided and the measured three-dimensional probe in the measurement of tooth surface when the impact of friction and the measurement results. The measurement method is based on "direct measurement" principle, concrete steps are: first bevel gear in accordance with the adjustment of machine parameters and tool geometry parameters to be processed by calculating the large and small bevel gear tooth surface ideal geometric processing parameters; the tooth tooth surface as a reference, respectively, and the actual process (or after heat treatment) of large and small gear tooth surface compared to the actual measured tooth surface of the tooth surface with an ideal geometric deviation. MATCH procedures through the use of dedicated, determined corresponding to the actual measured tooth surface machining parameters of the illusion; re-engagement model in accordance with TCA analysis, calculated by the bevel gear pair integrated deviation and tangential contact conditions, test whether or not to meet the requirements. If necessary, the corresponding software will be based on the measurement results, re-calculate and adjust the machining parameters in order to re-try all they can be processed into a more satisfied with the quality of products.
(2) coordinates of point scanning type bevel gear of the overall measurement error
Seiki, Osaka, Japan recently proposed using two-dimensional measurement of bevel gear tooth surface measurement to point scanning method has been satisfactory and reliable results. This method has the following characteristics: the workpiece by controlling the rotation, the parallel displacement of probe movement, to avoid the probe and the tooth surface friction between the adverse effects of measurement; measurement as a result of the use of scanning, surveying the region to cover the entire tooth surface, including Top Gear, as well as close to large and small end of the region; measurement path can have a wide range of choices, usually tooth number and tooth number of each to the three, a total of six; each sample the number of scanning lines of up to 113 points, as sampling density, to reflect minor tooth surface waviness (which often is not pleasant ripple of the main sources of noise, the conventional point-to-point measurement method difficult to measure). The method used the "conjugation of" principle, the concrete steps are: First of all, the basis of machining parameters and tool parameters to be the ideal gear tooth surface geometry processing parameters, to calculate the conjugate with it, no transmission error of the virtual conjugate of the pinion tooth surface geometry parameters; the actual processing of the large gear tooth surface with the ideal gear tooth surface processing compare measurements to detect gear tooth profile and the relative deviation upward; the actual processing of the pinion tooth surface and calculation of be conjugate Virtual pinion tooth surface compared with measurements, to detect the gear tooth profile and the relative deviation upward. According to the relative deviation of measured, calculated by the deputy of the three-dimensional bevel gear tooth surface morphology of the comprehensive plan deviation, deviation and tangential contact with the integrated form of (including access to the path of contact area shape, size, location, etc.). By physical measurement, than on the authentication, point-to-point and point measurements of the measurement scan measurement results are consistent.
(3) mating-type bevel gear to scan the whole point of the measurement error
Chengdu Tool Research Institute of the bevel gear to mesh-type scan measurement point is one-sided meshing bevel gear tester, the design of the installation location by using a special measuring bevel gear and bevel gear test for measuring the rolling one-sided engagement. This measurement of bevel gear pair "basis" cone measured geometric parameters and the geometric parameters of gear pair are all the same. Measurement methods or the use of corrosion-paste method, in large and small measurement of the gear teeth and white make the necessary gear tooth profile or ridge to the measurement, by measuring the bevel gear or the gear tooth profile and match to the measurement of ridge bevel gear of the measured tooth contact transmission, the meshing of bevel gears to complete scanning the overall error of measurement points. Measurement path and measuring the number of gear teeth, and a total of 3 +3 is generally 6. Mating-type bevel gear to scan the overall error of measurement points used the "relative measurement of the local benchmark" principle. Measurement of specific steps are as follows: In accordance with the actual bevel gear pair sports / test experiment (or experience), elected by the factory can best meet the needs of the bevel gear use requirements vice as a "benchmark" bevel gear pair (known as the local benchmark), its integrated bias-cut to a cut tooth to the integrated form of bias and the contact area was identified as the assessment of the accuracy of the bevel gear of the main reference Vice indicators. Measurement of Bevel Gear and the local base of meshing bevel gears, bevel gears in mesh single tester measured tooth profile deviation of a consolidated Board - measured (local base bevel gear Deputy - Vice-bevel gear benchmarks, the same below), integrated to the deviation of tooth Board - measuring, cutting to the integrated deviation of the Board - measuring a tooth integrated deviation Board - measuring, shape Council contact area - measured, as well as the integrated deviation of three-dimensional tooth surface morphology of Fig Bureau - measuring and so on, and was recognized as a bulk evaluation of bevel gear testing The accuracy of a single bevel gear indicators mainly refer to baseline data. Measured part bevel gear and bevel gear measuring method according to the same measurement, the deviation of the workpiece has been Bevel Gear - Bevel Gear measurement data; by the computation of the corresponding deviations workers - Bureau data (that is, relative to the workpiece bevel gear partial cone base Gear indicator of the corresponding deviations of the accuracy). And then measured in accordance with the Public Works - Bureau deviation of the accuracy of data and indicators for the development of tolerance, to determine the bevel gear of the level of quality and interchangeability.
Bevel gear overall error measurement method is simple, fast and reliable measurement information-rich, especially for mass production. As a result of measurement must be measured using special gear, so this method should not be used for a single measurement of small quantities. However, since the bevel gear at the same time the overall error of measurement also has a rolling bevel gear tester, so it can be used for single-piece and small-batch precision bevel gear Deputy comprehensive detection and production of the test workpiece and cutting tool debugging.
3 Conclusion
Through the bevel gears in recent years the field of measuring the status of technology research and development, both at home and abroad to highlight the overall error of measurement of bevel gear technology, methods and development of the corresponding equipment. China's self-developed scanning mating-type bevel gear at the overall error of measurement technology, has been gradually recognized by domestic and foreign counterparts; technology development based on the overall error of the bevel gear measuring instrument is to the production line and continue to improve measurement practice . It is believed that the mesh-style points based on scanning the overall error of measurement of bevel gear technology, the establishment of precision bevel gear bulk products database, it is very possible to adopt in accordance with the use of computer-assisted measurement technique to achieve automatic arc bevel gear pair quickly.
錐齒輪測(cè)量技術(shù)的最新進(jìn)展
1?概述
錐齒輪傳動(dòng)機(jī)構(gòu)在汽車、直升飛機(jī)、機(jī)床及電動(dòng)工具制造業(yè)中,得到了廣泛的應(yīng)用。不同的用途對(duì)錐齒輪性能質(zhì)量的要求也不同,歸納起來(lái)包括:①有良好的接觸區(qū),能可靠的傳遞動(dòng)力扭矩;②有良好匹配的幾何形狀,能平穩(wěn)的傳遞運(yùn)動(dòng),從而保證載荷均勻、傳動(dòng)平穩(wěn)、振動(dòng)小、噪音低。工廠通常采用雙嚙儀及檢測(cè)接觸斑點(diǎn)的滾動(dòng)檢查儀來(lái)控制錐齒輪的質(zhì)量,但實(shí)際上很難精確判定錐齒輪的使用性能。
錐齒輪的精度測(cè)量方法和圓柱齒輪類同,通??煞譃槿N:①坐標(biāo)式幾何解析測(cè)量法。即把錐齒輪作為一個(gè)幾何實(shí)體,對(duì)其幾何元素分別進(jìn)行單項(xiàng)幾何精度的測(cè)量;齒輪測(cè)量中心是其主要測(cè)量?jī)x器。②嚙合式綜合精度測(cè)量法。即把錐齒輪作為一個(gè)傳動(dòng)元件,對(duì)其傳動(dòng)精度、接觸斑點(diǎn)、振動(dòng)噪音進(jìn)行綜合測(cè)量。其測(cè)量?jī)x器主要有錐齒輪單面嚙合檢查儀、錐齒輪雙面嚙合測(cè)量?jī)x及錐齒輪滾動(dòng)檢驗(yàn)機(jī)。③錐齒輪整體誤差測(cè)量法。它將錐齒輪作為一個(gè)用于實(shí)現(xiàn)傳動(dòng)功能的幾何實(shí)體,或用坐標(biāo)測(cè)量法按單項(xiàng)幾何精度測(cè)量方式測(cè)量出錐齒輪的整體誤差,實(shí)現(xiàn)錐齒輪單項(xiàng)幾何誤差和傳動(dòng)精度、質(zhì)量之間內(nèi)在聯(lián)系的分析研究;或按單面嚙合測(cè)量方式、采用嚙合點(diǎn)掃描測(cè)量方法,對(duì)錐齒輪的整體誤差進(jìn)行測(cè)量,得到錐齒輪的綜合運(yùn)動(dòng)精度、接觸斑點(diǎn)以及各單項(xiàng)幾何精度。因此,錐齒輪整體誤差測(cè)量法是前兩種測(cè)量方法的集成和發(fā)展。
隨著坐標(biāo)測(cè)量技術(shù)、計(jì)算機(jī)控制與測(cè)量技術(shù)的發(fā)展,近年來(lái)對(duì)錐齒輪整體誤差測(cè)量技術(shù)的研究得到很快的發(fā)展。由于齒輪測(cè)量中心等圓柱式多坐標(biāo)多功能測(cè)量?jī)x器的測(cè)量性能、數(shù)據(jù)處理能力的提高,錐齒輪的坐標(biāo)式幾何解析測(cè)量技術(shù),已由單項(xiàng)幾何誤差測(cè)量發(fā)展到錐齒輪整體誤差測(cè)量,提高了錐齒輪設(shè)計(jì)、加工、精度質(zhì)量的檢測(cè)判定以及使用性能的預(yù)測(cè)等整個(gè)錐齒輪制造技術(shù)的水平。由我國(guó)自行開發(fā)、基于“可控點(diǎn)運(yùn)動(dòng)—幾何測(cè)量原理”的錐齒輪單面嚙合點(diǎn)掃描測(cè)量技術(shù)及基于該技術(shù)開發(fā)的錐齒輪整體誤差測(cè)量?jī)x,也正在更多地走向生產(chǎn)第一線,使我國(guó)錐齒輪測(cè)量理論、測(cè)量技術(shù)的實(shí)際應(yīng)用得到了進(jìn)一步的提高和發(fā)展。
2?錐齒輪精度主要測(cè)量方法及儀器
2.1坐標(biāo)式幾何解析測(cè)量方法及儀器
機(jī)械展成坐標(biāo)式直錐齒輪測(cè)量?jī)x較早就有產(chǎn)品,以瑞士馬格KP42型為代表,精度很高但結(jié)構(gòu)復(fù)雜。自1990年前后,CNC齒輪測(cè)量中心推向市場(chǎng),坐標(biāo)式弧錐齒輪幾何形狀誤差測(cè)量方法才有了迅速發(fā)展并得到推廣應(yīng)用。現(xiàn)今市場(chǎng)上國(guó)外的齒輪測(cè)量中心,無(wú)論是德國(guó)克林伯格的P63,還是美國(guó)格里森/馬爾的GMX275、M&M的西格馬3,都已具備了測(cè)量錐齒輪的功能。這些儀器都達(dá)到VDI/VDE等級(jí)規(guī)定的1級(jí),空間測(cè)量不確定度在2微米以上;可對(duì)錐齒輪的單項(xiàng)幾何誤差進(jìn)行檢測(cè),如齒距偏差(包括單個(gè)齒距偏差、齒距累計(jì)偏差、齒距累計(jì)總偏差)、齒廓偏差(包括齒廓總偏差、齒廓形狀偏差、齒廓傾斜偏差)、齒向偏差(包括齒向總偏差、齒向形狀偏差、齒向傾斜偏差)并可輸出三維齒面形狀偏差形貌圖等。
2.2?單面嚙合滾動(dòng)檢驗(yàn)綜合測(cè)量方法及儀器
錐齒輪單面嚙合滾動(dòng)檢測(cè)方法在生產(chǎn)中已經(jīng)使用多年。以美國(guó)格里森N0.513滾動(dòng)檢驗(yàn)機(jī)為例,在被測(cè)錐齒輪副單面嚙合的情況下,模擬其工作狀態(tài),加以一定的速度和載荷,調(diào)整V/H,進(jìn)行著色接觸區(qū)(斑點(diǎn))的檢測(cè),以判定該被測(cè)錐齒輪副的接觸狀況;借助于加速度傳感器、拾音器測(cè)量其振動(dòng)和噪音,對(duì)齒頻諧波進(jìn)行掃描檢測(cè)。這種方法屬于“準(zhǔn)動(dòng)態(tài)”測(cè)量方法,它對(duì)于錐齒輪的精度檢測(cè)是不夠完整、不夠準(zhǔn)確的。而采用光電編碼器作為角度基準(zhǔn)、用于錐齒輪切向綜合精度檢測(cè)的錐齒輪單面嚙合檢查儀,如德國(guó)克林伯格公司的PSKE900,因其檢測(cè)項(xiàng)目單一,尤其難以根據(jù)檢測(cè)結(jié)果對(duì)錐齒輪加工機(jī)床參數(shù)的調(diào)整給以指導(dǎo)、以改進(jìn)錐齒輪加工質(zhì)量。性價(jià)比較差,故生產(chǎn)中不多采用。
近年來(lái)格里森公司推出的鳳凰500HCT數(shù)控錐齒輪滾動(dòng)檢驗(yàn)機(jī)則同時(shí)具備了滾動(dòng)檢驗(yàn)機(jī)和單面嚙合檢查儀的測(cè)量功能,既能測(cè)量錐齒輪的切向綜合誤差,又能數(shù)字化測(cè)量錐齒輪接觸區(qū)、進(jìn)行三維結(jié)構(gòu)噪音分析等。該機(jī)型功能先進(jìn),代表了該類產(chǎn)品當(dāng)代的發(fā)展水平,雖價(jià)格昂貴,但在國(guó)內(nèi)已有個(gè)別用戶。與此類似的還有克林伯格GKC60、奧立孔T50等數(shù)控錐齒輪檢驗(yàn)機(jī)。
2.3?整體誤差測(cè)量方法及儀器
錐齒輪整體誤差測(cè)量是在同一個(gè)回轉(zhuǎn)角度位移坐標(biāo)上按嚙合順序?qū)㈠F齒輪工作齒面上各檢測(cè)點(diǎn)所測(cè)得的所有單項(xiàng)幾何誤差集成為一個(gè)錐齒輪整體誤差圖,并以此為基礎(chǔ),完成對(duì)于錐齒輪單項(xiàng)幾何精度、綜合運(yùn)動(dòng)精度以及錐齒輪副接觸狀態(tài)的分析計(jì)量,實(shí)現(xiàn)對(duì)于錐齒輪使用性能和質(zhì)量的評(píng)估和監(jiān)控。錐齒輪整體誤差測(cè)量方法和儀器,目前可分為二類三種。一類為坐標(biāo)式幾何解析測(cè)量法,該方法又分為“點(diǎn)到點(diǎn)測(cè)量法”和“點(diǎn)掃描測(cè)量法”,兩種方法采用的儀器都為CNC齒輪測(cè)量中心,但配用的測(cè)量軟件包有所不同;另一類為嚙合式運(yùn)動(dòng)幾何測(cè)量法(即嚙合式點(diǎn)掃描測(cè)量法,該方法為我國(guó)首創(chuàng)),所采用的儀器為錐齒輪單面嚙合檢查儀,配有專用的測(cè)量錐齒輪和測(cè)量軟件包。
(1)坐標(biāo)式點(diǎn)到點(diǎn)錐齒輪整體誤差的測(cè)量
在齒輪測(cè)量中心上,用三維測(cè)頭沿錐齒輪的齒廓和齒向兩個(gè)方向,按預(yù)先確定的間距,對(duì)被測(cè)齒面各檢測(cè)點(diǎn)(通常為齒廓上5處、齒向上9處,共45點(diǎn))的幾何形狀誤差進(jìn)行一點(diǎn)一點(diǎn)的測(cè)量。這種方法可以避免三維測(cè)頭和被測(cè)齒面間在測(cè)量時(shí)產(chǎn)生摩擦力而影響測(cè)量結(jié)果。該測(cè)量方法采用的是“直接測(cè)量”?原理,具體步驟為:首先根據(jù)錐齒輪加工機(jī)床的調(diào)整參數(shù)和刀具幾何參數(shù),通過計(jì)算得到被加工大、小錐齒輪理想加工齒面的幾何參數(shù);將該齒面作為參照齒面,分別與實(shí)際加工(或經(jīng)熱處理后)的大、小齒輪的齒面進(jìn)行比較,測(cè)得實(shí)際齒面與理想齒面的幾何偏差。借助于專用的MATCH程序,確定相應(yīng)于被測(cè)實(shí)際齒面的假象機(jī)床加工參數(shù);再按照嚙合模型進(jìn)行TCA分析,計(jì)算得到錐齒輪副的切向綜合偏差和接觸狀況,檢驗(yàn)是否滿足要求。如有必要,相應(yīng)軟件將根據(jù)測(cè)量結(jié)果,重新計(jì)算并調(diào)整機(jī)床加工參數(shù),以便再次試切時(shí),能加工出質(zhì)量更滿意的產(chǎn)品。?
(2)坐標(biāo)式點(diǎn)掃描錐齒輪整體誤差的測(cè)量
日本大阪精機(jī)近來(lái)提出的、采用二維測(cè)頭對(duì)錐齒輪齒面進(jìn)行點(diǎn)掃描測(cè)量的方法,得到了可靠滿意的測(cè)量結(jié)果。該方法具有以下特點(diǎn):通過控制工件的回轉(zhuǎn)、測(cè)頭的平行位移運(yùn)動(dòng),避免了測(cè)頭與齒面間的摩擦力對(duì)測(cè)量的不利影響;由于采用掃描測(cè)量方式,測(cè)量區(qū)域可覆蓋整個(gè)齒面包括齒頂以及接近大、小端的區(qū)域;測(cè)量路徑可有多種選擇,通常齒形數(shù)及齒向數(shù)各為3條,共6條;每條掃描線上的采樣數(shù)可達(dá)113個(gè)點(diǎn),由于采樣密度大,能夠反映齒面上的微小波紋度(該波紋往往是不悅耳噪音的主要來(lái)源,用常規(guī)的點(diǎn)到點(diǎn)測(cè)量方法難以測(cè)量)。該方法采用的是“共軛測(cè)量”原理,其具體步驟為:首先根據(jù)機(jī)床加工參數(shù)和刀具參數(shù)計(jì)算得到大齒輪理想加工齒面的幾何參數(shù),計(jì)算出與它相共軛、無(wú)傳動(dòng)誤差的虛擬共軛小齒輪的齒面幾何參數(shù);將實(shí)際加工的大齒輪齒面與理想加工大齒輪齒面進(jìn)行對(duì)比測(cè)量,檢測(cè)出齒廓及齒向上的相對(duì)偏差;將實(shí)際加工的小齒輪齒面與計(jì)算得到的虛擬共軛小齒輪齒面進(jìn)行對(duì)比測(cè)量,檢測(cè)出齒廓及齒向上的相對(duì)偏差。根據(jù)所測(cè)得的相對(duì)偏差,計(jì)算得到該錐齒輪副的三維齒面綜合偏差形貌圖、切向綜合偏差和接觸形態(tài)(包括接觸路徑,接觸區(qū)域形狀、大小位置等)。經(jīng)實(shí)物測(cè)量、比對(duì)驗(yàn)證,點(diǎn)到點(diǎn)測(cè)量法和點(diǎn)掃描測(cè)量法的測(cè)量計(jì)算結(jié)果是一致的。
(3)嚙合式點(diǎn)掃描錐齒輪整體誤差的測(cè)量
成都工具研究所提出的錐齒輪嚙合式點(diǎn)掃描測(cè)量法,是在錐齒輪單面嚙合檢查儀上,按設(shè)計(jì)安裝位置、采用特殊測(cè)量錐齒輪與被測(cè)錐齒輪進(jìn)行單面嚙合的滾動(dòng)測(cè)量。這種測(cè)量錐齒輪副的“基礎(chǔ)”幾何參數(shù)和被測(cè)錐齒輪副的幾何參數(shù)是完全一樣的。測(cè)量時(shí)采用腐蝕方法或粘貼方法,在大、小測(cè)量齒輪相間的輪齒上做成所需的齒廓或齒向測(cè)量棱線,通過測(cè)量錐齒輪的齒廓或齒向測(cè)量棱線與相配對(duì)的被測(cè)錐齒輪齒面接觸傳動(dòng),完成錐齒輪的嚙合點(diǎn)掃描整體誤差測(cè)量。測(cè)量路徑數(shù)與測(cè)量齒輪齒數(shù)有關(guān),一般為3+3共6條。錐齒輪嚙合式點(diǎn)掃描整體誤差測(cè)量采用的是“局部基準(zhǔn)相對(duì)測(cè)量”原理。具體測(cè)量步驟如下:根據(jù)錐齒輪副實(shí)際跑車/試車實(shí)驗(yàn)(或經(jīng)驗(yàn)),由廠方選出能最佳滿足使用要求的錐齒輪副作為“基準(zhǔn)”錐齒輪副(稱為局部基準(zhǔn)),它的切向綜合偏差、一齒切向綜合偏差及接觸區(qū)形態(tài)被確認(rèn)為評(píng)定該對(duì)錐齒輪副精度的主要參照指標(biāo)。測(cè)量錐齒輪和局部基準(zhǔn)錐齒輪相嚙合,在錐齒輪單面嚙合檢查儀上測(cè)得綜合齒廓偏差局—測(cè)(局部基準(zhǔn)錐齒輪副—測(cè)量基準(zhǔn)錐齒輪副,下同)、綜合齒向偏差局—測(cè)、切向綜合偏差局—測(cè)、一齒綜合偏差局—測(cè)、接觸區(qū)形態(tài)局—測(cè)以及三維齒面綜合偏差形貌圖局—測(cè)等,并被確認(rèn)為批量錐齒輪檢測(cè)時(shí)評(píng)定該單個(gè)錐齒輪主要精度指標(biāo)的參考基準(zhǔn)數(shù)據(jù)。被測(cè)工件錐齒輪和測(cè)量錐齒輪按同樣方法進(jìn)行測(cè)量,得到各項(xiàng)偏差的工件錐齒輪—測(cè)量錐齒輪數(shù)據(jù);經(jīng)運(yùn)算得到相應(yīng)各項(xiàng)偏差工—局?jǐn)?shù)據(jù)(即工件錐齒輪相對(duì)于局部基準(zhǔn)錐齒輪的相應(yīng)各項(xiàng)精度指標(biāo)的偏差)。然后根據(jù)所測(cè)得的工—局偏差數(shù)據(jù)和制定的精度指標(biāo)公差范圍,來(lái)判定錐齒輪的質(zhì)量