3T電動(dòng)葫蘆滑輪外殼工藝性分析及沖孔模具設(shè)計(jì)含11張CAD圖
3T電動(dòng)葫蘆滑輪外殼工藝性分析及沖孔模具設(shè)計(jì)含11張CAD圖,電動(dòng)葫蘆,滑輪,外殼,工藝,分析,沖孔,模具設(shè)計(jì),11,十一,cad
外文出處:Handbook of Die Design Copyright 2006
ISBN 0-07-146271-6
498th pages-500th pages
1.外文資料翻譯譯文(約3000漢字):
版權(quán)所有2006
國際標(biāo)準(zhǔn)書號(hào)0-07-146271-6
模具設(shè)計(jì)手冊(cè)
伊萬娜·蘇奇
摘自第516頁-第525頁
第十一章
模具中的一部分設(shè)置了半自動(dòng)檢測(cè)系統(tǒng),在這些系統(tǒng)中,通過放置探針,他們可以得出該位置以外的其他尺寸。探針填補(bǔ)了開口的空白,精度令人印象深刻,但是對(duì)于今天的制造車間來說,整個(gè)過程可能仍然很慢。
在需要對(duì)生產(chǎn)進(jìn)行現(xiàn)場(chǎng)檢查以確保每個(gè)工具和每臺(tái)機(jī)器正確運(yùn)行的情況下,所有這些人都是非常寶貴的。但是以這種方式進(jìn)行第一道檢查,測(cè)量每個(gè)開孔,觀察它是否適合打印的公差范圍,同時(shí)試圖忽略數(shù)十名排隊(duì)等候在背后的工人,這是令人沮喪的,昂貴的,并要求嚴(yán)格。這也浪費(fèi)了這些人的才能。
自動(dòng)化的模內(nèi)測(cè)量和質(zhì)量控制系統(tǒng)已在金屬?zèng)_壓行業(yè)中逐漸普及。并不是說這是一種新的控制方法,而是在金屬?zèng)_壓領(lǐng)域以外的其他任何地方都實(shí)現(xiàn)了。直到現(xiàn)在,在印刷過程中進(jìn)行自動(dòng)檢查和測(cè)試,進(jìn)行自動(dòng)質(zhì)量監(jiān)控,甚至進(jìn)行自動(dòng)質(zhì)量改進(jìn), 都被認(rèn)為是有效的過程,值得實(shí)施和改進(jìn)。
每個(gè)自動(dòng)化質(zhì)量控制系統(tǒng)都應(yīng)能夠收集由傳感器,激光或其他視覺檢查設(shè)備獲得的數(shù)據(jù),并立即處理此信息,以便將結(jié)果反饋給監(jiān)視或控制設(shè)備。沒錯(cuò),對(duì)于今天的高速印刷機(jī)來說, 某些較舊的PLC可能太慢了,并且在公司領(lǐng)導(dǎo)層不再責(zé)怪車間人員并使他們的注意力轉(zhuǎn)移到所使用設(shè)備的響應(yīng)能力和過時(shí)程度上之前,可能會(huì)發(fā)生許多故障。
設(shè)計(jì)良好的自動(dòng)化質(zhì)量控制系統(tǒng)應(yīng)使用最新技術(shù),并應(yīng)選擇替代舊的,不適當(dāng)?shù)牟贾?。這種設(shè)備必須能夠執(zhí)行所有必要的計(jì)算,以評(píng)估傳感器布置的數(shù)據(jù)并將其整理成有意義的信息。在此基礎(chǔ)上,系統(tǒng)應(yīng)該能夠區(qū)分出不良品和良品,并將不良品發(fā)送到其他存儲(chǔ)倉中,以供進(jìn)一步評(píng)估或報(bào)廢。系統(tǒng)應(yīng)在內(nèi)存中存儲(chǔ)由此產(chǎn)生的次品數(shù)量,例如,如果同一模具臺(tái)上出現(xiàn)過多的不良零件,則良好的系統(tǒng)應(yīng)向操作員顯示警告,甚至在必要時(shí)關(guān)閉壓機(jī)。
但是,并非所有機(jī)器都可以隨時(shí)停止。有些設(shè)備可能與整個(gè)喂食設(shè)備集團(tuán)捆綁在一起,停止過程可能會(huì)對(duì)它們之間造成嚴(yán)重破壞。因此,必須設(shè)計(jì)關(guān)閉協(xié)議,并準(zhǔn)備好在發(fā)生這種情況時(shí)實(shí)施該協(xié)議。該協(xié)議必須確定先關(guān)閉哪個(gè)饋電設(shè)備,然后再關(guān)閉哪個(gè)饋電設(shè)備,應(yīng)該顯示哪些錯(cuò)誤消息,以及在需要時(shí)最終關(guān)閉電源。
如果沒有其他數(shù)據(jù)解釋,質(zhì)量控制系統(tǒng)還必須能夠收集所有數(shù)據(jù)并以圖形形式顯示或作為SPC的統(tǒng)計(jì)分析顯示。即使要在生產(chǎn)線上安裝單獨(dú)的計(jì)數(shù)器,也應(yīng)考慮拒收零件的數(shù)量。
佐治亞理工學(xué)院實(shí)驗(yàn)室在這些方面取得了良好的開端,在那里開發(fā)了他們的高性能視覺系統(tǒng)SmartImage Sensor技術(shù),現(xiàn)在可用于各個(gè)行業(yè)。他們的相機(jī)配備了SmartImage傳感器和嵌入 式PowerPC處理器,即使在高速,高分辨率的檢查環(huán)境中,它 們也能顯示出最佳的圖像穩(wěn)定性和可重復(fù)性。該系統(tǒng)消除了操縱桿,圖像采集卡和CPU控制器,并且僅依賴于攝像機(jī)的視覺, 該視覺經(jīng)過訓(xùn)練可以感知和報(bào)告正常情況下的任何變化。這些攝像機(jī)是獨(dú)立的設(shè)備,足夠小以適合自己的手掌,但完全能夠提供質(zhì)量控制檢查結(jié)果,協(xié)調(diào)運(yùn)動(dòng)控制器的信息,生成統(tǒng)計(jì)過程控制數(shù)據(jù)以及一維,二維驗(yàn)證和報(bào)告。
作為附加設(shè)備,可以使用Smartlink單元,該單元最多可容納16個(gè)SmartImage傳感器。無需計(jì)算機(jī),即可從任何監(jiān)視器查看 所有攝像機(jī)的報(bào)告??梢詫D像凍結(jié)在屏幕上以進(jìn)行詳細(xì)檢查, 并且通過標(biāo)準(zhǔn)以太網(wǎng)技術(shù)的通信功能是常見的。
4-5-1 3d激光系統(tǒng)和反向掃描
幾年前,當(dāng)坐標(biāo)測(cè)量機(jī)(CMM)接管制造的質(zhì)量控制領(lǐng)域時(shí), 它們迅速成為行業(yè)標(biāo)準(zhǔn)。似乎每個(gè)人都有它們,每個(gè)人都使用了它們。不幸的是,那時(shí)它們已經(jīng)過時(shí)了。也許他們開發(fā)得太遲了,也許成本意識(shí)傳播得太快了,這些機(jī)器很快就擱置了, 許多制造商又回到了卡鉗和抽查中。
他們認(rèn)為:“畢竟,如果我使用的是精密模子或數(shù)控設(shè)備, 則其精度應(yīng)在 .005英寸[0.13毫米]或 .003英寸[0.08毫米]范圍內(nèi),或者無論如何,我不再需要檢查結(jié)果了?!睘榱诉_(dá)到最佳效果,將同一工具的新生產(chǎn)零件與先前產(chǎn)品進(jìn)行比較,并在帶燈的窗戶上進(jìn)行生產(chǎn)并交付生產(chǎn)。
在下一步發(fā)展之間邁出了一步,與觸摸相關(guān)的計(jì)算機(jī)化應(yīng)用程序應(yīng)運(yùn)而生。用手臂可以引導(dǎo)這些對(duì)象觸摸實(shí)際的2D和以后的3D零件,而計(jì)算機(jī)則可以解釋數(shù)據(jù),計(jì)算結(jié)果并提出評(píng)估,打印所有表格,統(tǒng)計(jì)數(shù)據(jù)和其他信息。
之后,開始進(jìn)行3D激光掃描。盡管零件價(jià)格高昂,但與原 始3D CAD文件相比,具有零件的優(yōu)點(diǎn)以及易于處理的特性迅速吸引了一些先驅(qū)者購買此設(shè)備。與CMM機(jī)器相比,發(fā)現(xiàn)激 光掃描儀更為精確,其中一些掃描儀的精度為0.001英寸[0.025 毫米],而有些甚至更低。在必須將CMM 3D探針緩慢地引導(dǎo)到被掃描零件的整個(gè)表面上的情況下,應(yīng)逐步獲取距離,間隙, 谷值;激光掃描沿著與零件并排的直線移動(dòng)。由于激光沒有接 觸正在掃描的物體,因此很少的灰塵顆粒不會(huì)妨礙其功能。對(duì) 于CMM機(jī)床而言并非如此,因?yàn)镃MM機(jī)床實(shí)際上會(huì)因零件上 的灰塵或任何其他異物而失去平衡。
3D激光掃描的另一個(gè)優(yōu)勢(shì)是逆向工程。這是一個(gè)過程,它允許測(cè)量實(shí)際產(chǎn)品并將數(shù)據(jù)傳輸?shù)接?jì)算機(jī)中,在計(jì)算機(jī)中,根據(jù)收集到的信息構(gòu)建3D CAD模型。借助逆向工程,可以在要加工的計(jì)算機(jī)內(nèi)存中生產(chǎn)實(shí)際對(duì)象的副本,或者在以后的生產(chǎn)中以其他方式制造。
4-5-2 相機(jī)系統(tǒng)與3d視覺比較
有人可能會(huì)問,在當(dāng)今的工業(yè)環(huán)境中,哪種是更好的自動(dòng)化質(zhì)量控制工具。這是一個(gè)偉大的問題,很難獲得答案。首先,必須評(píng)估應(yīng)用領(lǐng)域。如果我們要注意的缺陷是明亮且突出的,并且檢測(cè)它們所需的光線水平相對(duì)較低,那么相機(jī)是這兩者的更好解決方案。缺陷較暗,根本需要檢測(cè)很多光或缺陷極小時(shí), 應(yīng)首選激光質(zhì)量控制系統(tǒng)。
單個(gè)激光掃描儀都可以輕松看到非常亮或非常暗的區(qū)域。缺陷的可見性可以通過其波長的變化來增強(qiáng)。不管激光的線速度如何,檢測(cè)質(zhì)量(跨線)都是一致的。掃描可以在環(huán)境光或大功率照明下進(jìn)行。
另一方面,激光掃描系統(tǒng)的成本高于照相機(jī)視覺系統(tǒng)的成本。使用激光在主要是明亮區(qū)域的掃描功能時(shí),還發(fā)現(xiàn)運(yùn)行起來的成本更高。由于激光系統(tǒng)是色盲的,因此它們對(duì)不透明,彩色膠片的檢測(cè)能力會(huì)降低;他們最好用白光。
視覺系統(tǒng)(即攝像機(jī))價(jià)格便宜且易于安裝。它們的功能也很容易學(xué)習(xí),只有將多臺(tái)攝像機(jī)對(duì)準(zhǔn)多臺(tái)攝像機(jī)才能解決這些問題。但是,由于單臺(tái)攝像機(jī)通常不夠用,因此多攝像機(jī)系統(tǒng)通常是必須的。
相機(jī)對(duì)光線的連貫性敏感,因此,可能需要遮蓋環(huán)境光。由于多相機(jī)系統(tǒng)可能與光源對(duì)準(zhǔn),因此通常會(huì)引起問題。這可能會(huì)導(dǎo)致一個(gè)攝像機(jī)到另一個(gè)攝像機(jī)的不一致,并且可能會(huì)遇到變化的檢測(cè)精度。這些差異可能會(huì)隨著像素?cái)?shù)量的增加而增加。
外觀檢查可能取決于更大的功耗。如果認(rèn)為有必要進(jìn)行升級(jí), 則應(yīng)訴諸新設(shè)備,因?yàn)樯?jí)光學(xué)設(shè)備可能并不十分有效。
4-5-3 影響質(zhì)量控制程序的因素
在每個(gè)金屬?zèng)_壓車間以及任何印刷車間中,都有許多因素會(huì)嚴(yán)重影響零件的質(zhì)量和錯(cuò)誤的檢測(cè)。沒有考慮經(jīng)常引用的人為錯(cuò)誤,仍然有太多其他變量和影響。除其他外,零件上積油中已經(jīng)存在增塑劑可能會(huì)損害該措施的采取。油,污垢,碎屑,灰塵-所有這些都可能增加可能的錯(cuò)誤,并極大地影響檢查過程的結(jié)果。
熱量的影響可能對(duì)質(zhì)量控制程序的結(jié)果造成的最具破壞性的影響之一。熱量對(duì)金屬零件的影響(以前常常被忽略)正在以設(shè)計(jì)人員指定的越來越嚴(yán)格的公差范圍逐漸發(fā)展。由于溫度的變化,公差很小的零件可能在70 atF的規(guī)格范圍內(nèi),而在90 或100 F的規(guī)格范圍內(nèi)則完全超出規(guī)格。
溫度控制進(jìn)一步帶來了以下兩難困境:我們可能需要對(duì)質(zhì)量控制室進(jìn)行空調(diào)和消毒,這將使測(cè)量工具整日保持恒溫。但是, 當(dāng)商店的工人帶來一個(gè)大物體并要求立即對(duì)其進(jìn)行檢查時(shí),在
完全適應(yīng)受控溫度之前,該物體需要在冷藏室中停留多長時(shí)間?或者,是否可以始終將取暖測(cè)量視為有效?
鋼材和幾乎所有其他材料都會(huì)在熱中膨脹,并隨著冷而收縮。畢竟,平均熱膨脹系數(shù)對(duì)我們來說是眾所周知的,并且其值接近千分之一英寸/英寸和100 F(請(qǐng)參見表11-1)肯定會(huì)有所 不同。每100 F,長24英寸的零件將膨脹約0.50毫米[.020英 寸]。隨著尺寸和質(zhì)量的增加,由于熱引起的膨脹自然會(huì)增加。
當(dāng)所有類型的量規(guī),手動(dòng)或電子,自動(dòng)或半自動(dòng),三坐標(biāo)測(cè)量機(jī)以及所有其他測(cè)量設(shè)備也都受熱時(shí),我們?cè)撊绾螜z查零件, 這樣它們的讀數(shù)已經(jīng)存在內(nèi)置誤差?
在進(jìn)行模內(nèi)測(cè)量和質(zhì)量檢查時(shí),應(yīng)注意確定在哪里測(cè)量以及要測(cè)量什么。在此也存在由溫度引起的誤差,尤其是在發(fā)熱過程中。
表11-1選定材料在68–212 F時(shí)的平均熱膨脹系數(shù)(in / in / perF)
鋁:
1100
13.2
2011
12.7
3003
12.9
3004
13.3
5000
13.2
6061
13.1
6151
12.9
7075 13.1
不銹鋼:
301
9.2
302
9.2
304
9.2
316
9.2
309
8.7
310
8.0
410
5.5
416
5.5
419
6.2
420
5.5
鋼及其合金:
6.5
鐵:
5.6
鋅合金
15.2
注意點(diǎn):此處系數(shù)需要乘以10
可能發(fā)現(xiàn)規(guī)格不符合要求,但冷卻后,每張印數(shù)恰好一樣。但是,我們不要忘記,快速冷卻,任何劇烈的熱或操作變化都可能使零件變形,并且此后再也不會(huì)符合圖紙的規(guī)格。
溫度影響也會(huì)影響工具及其設(shè)置。敲擊幾次后,可能會(huì)檢查沖孔,并且發(fā)現(xiàn)模具稍微不對(duì)齊。在這里和那里插入墊片,并產(chǎn)生新的測(cè)試:仍未對(duì)準(zhǔn)。我們?cè)俅窝a(bǔ)齊,調(diào)整,清潔并重新插入組件,然后嘗試使用該工具,如果我們不走運(yùn),則可能仍然找不到該工具。簡而言之,沒有人意識(shí)到環(huán)境溫度超過100 F,并且發(fā)熱工具的材料尺寸不斷擴(kuò)大。
4-6 模具維護(hù)及模具調(diào)整
模具維護(hù)是一項(xiàng)復(fù)雜的任務(wù)。它涉及許多不同的操作,許多不同的過程,并且通常還涉及不同人員的工作。模具維護(hù)始于正確地給模具上油以進(jìn)行生產(chǎn)和存儲(chǔ)。它繼續(xù)與銳化沖模和沖模,檢查彈簧是否斷裂,檢查塊的磨損,撕裂,檢查所有模具元件的對(duì)準(zhǔn),檢查凸輪復(fù)位彈簧是否對(duì)準(zhǔn)或斷裂,甚至存儲(chǔ)先前生產(chǎn)中的第一個(gè)和最后一個(gè)零件,以供比較。
存放由模具生產(chǎn)的最后一塊零件可能會(huì)非常有用,因?yàn)槿绻腥丝赡苠e(cuò)誤地將模具從貨架上取下,并且如果它掉落在叉車上, 則下次生產(chǎn)時(shí)會(huì)發(fā)現(xiàn)模具未對(duì)準(zhǔn)或完全損壞。 (當(dāng)然, 取決于高度),人們不會(huì)想知道發(fā)生了什么,導(dǎo)致問題的原因, 并且已經(jīng)對(duì)這種現(xiàn)象有了現(xiàn)成的假設(shè)。
每個(gè)精心設(shè)計(jì)的模具維護(hù)程序都需要適當(dāng)?shù)奈臋n。模具維修記錄,模具對(duì)準(zhǔn)注意事項(xiàng)應(yīng)有條不紊地保存,并附有該工具的實(shí)際樣品。當(dāng)模具下降以進(jìn)行調(diào)整時(shí),應(yīng)將其記錄下來。當(dāng)下降以進(jìn)行銳化時(shí),應(yīng)將其記錄下來。無論出于什么原因而崩潰, 它也必須記錄在案。
這些先前維修和調(diào)整的記錄不能僅限于維修。生產(chǎn)記錄也應(yīng)保留。令人感興趣的是在運(yùn)行之間,維修之間以及磨削之間產(chǎn)生的模具數(shù)量。質(zhì)量控制記錄應(yīng)通過存儲(chǔ)每次連續(xù)的第一件檢查的結(jié)果來支持此文檔。如前所述,應(yīng)該存儲(chǔ)沖模剔除作為記錄零件內(nèi)的變化及其進(jìn)展的一種方式。
根據(jù)這些數(shù)據(jù),工具制造商,工程師和模具設(shè)計(jì)人員將能夠評(píng)估每個(gè)生產(chǎn)運(yùn)行,并查看在需要維修,磨銳或調(diào)整之前,模具可以生產(chǎn)多少個(gè)零件。他們應(yīng)該能夠確定任何裸片的哪個(gè)部分給他們帶來了問題,并在該區(qū)域朝著一個(gè)控制良好的信息數(shù)據(jù)庫發(fā)展的同時(shí),改變?cè)搮^(qū)域的下一個(gè)裸片的設(shè)計(jì),這將得到一個(gè)支持。運(yùn)轉(zhuǎn)良好的模具工廠園區(qū)。這些收集的數(shù)據(jù)可能會(huì)成為知識(shí)和經(jīng)驗(yàn)的金礦,這些資源將匯集到那些有興趣并愿意聽取其警告的同時(shí)加快其建議速度的人們。
1. 模具銳化
模具的磨削是一個(gè)棘手的過程。我們對(duì)它們的銳化程度越高, 我們對(duì)它們的破壞就越多,但是如果不進(jìn)行銳化,我們對(duì)它們的破壞可能會(huì)更多。沒錯(cuò),模具必須磨光,但是需要評(píng)估多少和頻率。帶有由35 HRc的冷軋鋼制成的沖頭的模具可能需要每兩到三千塊進(jìn)行銳化。但是使用硬質(zhì)合金模具的模具應(yīng)該可以生產(chǎn)出非常多的零件??紤]模具的材料,我們是否在跟蹤我們的文檔?還是我們完全忽略了這個(gè)主題?
根據(jù)以前的記錄,我們還應(yīng)該能夠確定給定鈑金材料的磨削頻率。并非所有的低碳冷軋帶鋼(LC CRS)都達(dá)到18 HRc或28 HRc。如果訂購中未指定,則材料的硬度可能會(huì)有很大差異。這樣的硬度變化當(dāng)然將對(duì)工具產(chǎn)生影響。彎曲工位將產(chǎn)生與上次運(yùn)行不同的彎曲。取決于材料的硬度條件,穿孔工具可能遲早會(huì)變鈍。帶材或片材厚度的公差范圍變化應(yīng)該已經(jīng)是常識(shí),因此,應(yīng)自動(dòng)監(jiān)視這些變化。
基于這些信息,我們應(yīng)該能夠確定何時(shí)(大約在當(dāng)前訂單的情況下)需要從壓機(jī)上拉出模具并對(duì)其進(jìn)行銳化。
但是,我們?nèi)绾握J(rèn)識(shí)到該工具需要提高?
對(duì)于該答案,我們必須查看實(shí)際的模具帶-最后進(jìn)入模具并經(jīng)過所有工位的模具帶。對(duì)于復(fù)合模具,它是該模具中的最后一個(gè)產(chǎn)品或最后幾個(gè)產(chǎn)品。
仔細(xì)觀察。觀察切割線-毛刺是否過多?它們是在切口的橫截面上顯示出不一致的地方,還是從直徑的一側(cè)到另一側(cè)的毛刺不一致?拋光區(qū)域的深度是否與我們使用的模具間隙不一致?如果對(duì)這些問題中的任何一個(gè)的回答是“是”,那么肯定會(huì)更糟。
我們還必須檢查零件表面或條帶中是否有其他變化。我們必須尋找可能由于組件損壞而引起的劃痕和劃痕。我們必須注意切割線的中斷,成型線的變化,切割的不足。問題可能隱藏在零件或廢料的不同彈出方式中,突然出現(xiàn)的銳利邊緣或模具表面上的小碎屑,零件上的工具或硬件印象中。這些都表示特定問題,組件損壞或缺少對(duì)齊。
2. 發(fā)現(xiàn)問題
建議盡早發(fā)現(xiàn)可能的問題。在模具的最后一部分上,有時(shí)可能會(huì)在邊緣附近看到一條細(xì)小的發(fā)際線。它似乎是由成形操作引起的,因?yàn)樗浅=咏蹚澋倪吘?。通過對(duì)空白的仔細(xì)觀察和比較,我們可以看到在上一次運(yùn)行中已經(jīng)出現(xiàn)了細(xì)小的發(fā)際線,并且在隨后的每次運(yùn)行中它都越來越明顯。
經(jīng)驗(yàn)豐富的工具制造者的眼睛會(huì)立即懷疑犯規(guī),并且確實(shí), 如果將模具拆開,可能會(huì)檢測(cè)到模具塊中的裂縫。這個(gè)裂縫還算不錯(cuò),但似乎隨著工具的每次運(yùn)行而增加。
建議進(jìn)行銳化處理,但無濟(jì)于事,但可能會(huì)發(fā)現(xiàn)很大一部分磨塊在砂輪下方粉碎。這本身就揭示了故事的下一章:一次, 由于對(duì)準(zhǔn)不良造成的拉力導(dǎo)致模塊破裂,有人試圖通過焊接修復(fù)損壞。焊件比硬化的工具鋼塊軟,在隨后的生產(chǎn)過程中屈服, 并在與生產(chǎn)有關(guān)的應(yīng)力下緩慢崩解,并且從未解決與對(duì)準(zhǔn)有關(guān)的應(yīng)力。研磨但去除了焊縫中已經(jīng)松散的部分,這樣就將整個(gè)過程表現(xiàn)了出來。
在塊的新部分上進(jìn)行焊接有時(shí)可能會(huì)有所幫助,但在其他時(shí)候,除了其他方面,它還可能會(huì)產(chǎn)生更大的損壞,這取決于焊工的專業(yè)水平。已經(jīng)很難確定先前的焊件達(dá)到的深度已經(jīng)無濟(jì)于事。因此,最好的選擇是替換整個(gè)塊,或者刪除發(fā)現(xiàn)有缺陷的部分,并在其位置安裝一個(gè)全新的部分。進(jìn)行模具修復(fù)時(shí), 焊接是一個(gè)棘手的過程。通常,將整個(gè)節(jié)段焊接在一起,以嘗試修復(fù)此斷裂段。硬化塊的焊接必定會(huì)加熱焊縫附近的表面, 從而在該區(qū)域產(chǎn)生不同的材料質(zhì)量。取決于鋼的類型,碳可能會(huì)被置換,并可能以這種方式產(chǎn)生薄弱點(diǎn)。當(dāng)通過壓力功能承受應(yīng)力負(fù)荷時(shí),該區(qū)域?qū)@示出與周圍表面不同的特性。整個(gè)部分可能無法支撐,因?yàn)檫@樣可以形成淺間隙或凹槽。彎曲部分可能會(huì)變得未對(duì)齊,并且可能會(huì)因這種差異而折斷。沖頭和沖??赡軙?huì)失去硬化塊的牢固支撐,并可能導(dǎo)致其過度斷裂。每當(dāng)發(fā)生意外導(dǎo)致脫落,或者觀察到某些工具的磨損超過正常情況,應(yīng)該懷疑并尋找以前的焊接方法,現(xiàn)在已經(jīng)破損了。
有時(shí),我們可能會(huì)在零件的成型表面上發(fā)現(xiàn)一個(gè)小臺(tái)階。經(jīng)調(diào)查,發(fā)現(xiàn)成型塊的勻場(chǎng)不良。勻場(chǎng)可以非常隱蔽,因?yàn)樗ǔ?huì)填補(bǔ)預(yù)期的空白。但是在生產(chǎn)中,隨著時(shí)間的流逝,被困空氣,油甚至是墊片之間的碎屑可能會(huì)被沖壓工作推出,墊片 會(huì)沉降下來,從而暴露出以前是平坦表面的臺(tái)階。通常,將墊 片打磨成平坦的表面并插入一塊薄的支撐板來代替墊片,而不 是不加選擇地將墊片粘在這里和那里。隨意擺放的墊片將變得 不可控制,遲早沒人會(huì)知道添加或刪除的千分之幾以及在何處。塊的一個(gè)邊緣可能被打孔.025英寸[0.64毫米],而另一邊緣可能被打孔 .005英寸[ 0.13毫米],整個(gè)表面很容易變平。這樣的傾斜肯定會(huì)使模具(或沖頭)傾斜,從而在模具的每個(gè)部分產(chǎn)生不對(duì)準(zhǔn)。有誤差,我們可以不斷提高精度質(zhì)量來改善這個(gè)問題。
3. 預(yù)防問題
為了提高通用性和更換速度,所有模具應(yīng)采用相似的(即使不是通用的閉合高度)制成。每個(gè)模具應(yīng)在其模具模塊上貼上金屬標(biāo)簽或其他形式的標(biāo)識(shí),以指示噸位和特殊的安裝程序, 以及其他相關(guān)信息。有些模具看起來像重型工具,但它們可能只產(chǎn)生很少的切割,從而將噸位降到了最低,反之亦然。
必須評(píng)估相對(duì)于模具尺寸的壓機(jī)床尺寸,也許以書面形式將正確的噸位和正確的床尺寸壓機(jī)分配給每個(gè)模具。通常情況下, 公司中的某人總是“知道”按下模具的去向。但是,如果這個(gè)有 知識(shí)的人休假或退休,在訓(xùn)練下一個(gè)“要知道的人”之前,可能 會(huì)造成很多損失。
對(duì)于每種進(jìn)料,不僅應(yīng)仔細(xì)檢查批料的厚度公差范圍。還必須檢查材料的硬度,因?yàn)椴⒎撬心>叨寄茌p松處理10 HRc 或更大的差異。
當(dāng)使用帶有剪切毛坯的復(fù)合模具時(shí),應(yīng)強(qiáng)調(diào)毛坯尺寸的控制。如果發(fā)現(xiàn)內(nèi)部剪切能力不足,則應(yīng)從其他地方購買毛坯,并切成精確的要求。在不使用毛坯的地方,必須檢查卷材送入系統(tǒng)并與模具一起進(jìn)行維護(hù)。模具生產(chǎn)最依賴的是運(yùn)轉(zhuǎn)良好的線圈送料系統(tǒng)。
4. 模具調(diào)整
有時(shí)可能需要調(diào)整模具。但是有些模具可能需要比其他模具更多的調(diào)整。在涉及復(fù)雜的模具操作的情況下,每次運(yùn)行的結(jié)果或每個(gè)零件序列的結(jié)果不必總是相同的??赡軙?huì)有模具,如果手動(dòng)調(diào)節(jié),則每打幾下就必須將其從印刷機(jī)上拔下來。對(duì)于許多此類特殊情況,自動(dòng)調(diào)整可能是解決方案。這種自動(dòng)化的模內(nèi)過程結(jié)合了現(xiàn)代金屬?zèng)_壓的多個(gè)方面。首先,在生產(chǎn)過程中會(huì)自動(dòng)在模具中檢查零件。這樣獲得的測(cè)量結(jié)果將報(bào)告給控制器,該控制器能夠評(píng)估數(shù)據(jù)并發(fā)送返回到模具的命令。
如圖11-27所示,在零件上產(chǎn)生卷曲的模具需要頻繁地調(diào)節(jié)下模具部分。為此,在模具底模表面上逐漸傾斜,調(diào)節(jié)螺釘可以在上面傾斜。由步進(jìn)電機(jī)驅(qū)動(dòng)的螺釘可以移入和移出,從而增加或減小模塊的高度。
一旦模內(nèi)測(cè)量設(shè)備能夠識(shí)別出差異并報(bào)告給PLC控制器, PLC控制器就會(huì)向步進(jìn)電機(jī)發(fā)出信號(hào),步進(jìn)電機(jī)將調(diào)節(jié)螺釘沿所示方向移動(dòng)。這樣,模塊的表面將降低或向上推動(dòng)。該運(yùn)動(dòng)是漸進(jìn)的,對(duì)模具沒有苛刻的影響。新的
圖11-27滑動(dòng)契形調(diào)整。(Metalforming
Magazine?, 1999 年2 月,第35 頁。經(jīng)PMA Services,Inc., OH, Independence,OH
始終從控制器中連續(xù)讀取所生產(chǎn)零件的成型數(shù)據(jù)與設(shè)定值及其公差范圍,并根據(jù)需要上下調(diào)整模塊的高度。
一旦被認(rèn)為是可能的,管芯內(nèi)調(diào)整可用于廣泛的應(yīng)用。例如, 要生產(chǎn)的五個(gè)零件完全相同,而第六個(gè)零件必須去除中心開口, 則進(jìn)行模內(nèi)調(diào)節(jié),這將減小該沖頭的高度,從而使其無法到達(dá)帶材表面并產(chǎn)生切口,可以使用。其他情況可能包括調(diào)整凸輪運(yùn)動(dòng),彎曲部分的高度變化,形成角度變化?;蛲ㄟ^壓合高度調(diào)節(jié)來精確控制帶材的滲透。
這種技術(shù)的應(yīng)用是一個(gè)廣闊的領(lǐng)域。結(jié)合金屬?zèng)_壓領(lǐng)域的其他進(jìn)展,它使金屬?zèng)_壓生產(chǎn)過程比以往任何時(shí)候都更加可控和可預(yù)測(cè)。
行為模擬軟件
當(dāng)今市場(chǎng)上有許多軟件包。一些人聲稱能夠從帶材布局開始進(jìn)行模具設(shè)計(jì),然后進(jìn)行復(fù)雜的,成熟的3D模具布置,這通常是有代價(jià)的,這可能是正確的。設(shè)計(jì)3D模具既不便宜也不快捷,而且很多時(shí)候甚至沒有必要。從這樣的設(shè)計(jì)派生地帶或從這樣的地帶開始3D構(gòu)建,有時(shí),即使使用最受尊敬的軟件程序,也是一項(xiàng)艱巨的任務(wù)。
另一方面,對(duì)于那些習(xí)慣3D思維方式并很好地適應(yīng)這種方法的人來說,3D設(shè)計(jì)軟件包可能是一個(gè)理想的選擇。不過, 應(yīng)該謹(jǐn)慎一點(diǎn),該軟件是否也能夠在2D環(huán)境中工作,對(duì)于其 中某些銷售商來說,無論銷售代表聲稱什么,它們都無法做到。與其他許多設(shè)計(jì)領(lǐng)域一樣,在模具設(shè)計(jì)領(lǐng)域中,總是存在偶爾 在2D模式下工作的機(jī)會(huì)。盡管我本人是幾個(gè)3D CAD程序的大力擁護(hù)者和用戶,但我仍在寫這些文字。
使用模具設(shè)計(jì)時(shí),2D和3D的結(jié)合以及從一種切換到另一種的多功能性非常重要。條形布局不能總是從已經(jīng)配備厚度的3D計(jì)算機(jī)化模型中建模。并非每個(gè)軟件都允許展平圖片,或?qū)?導(dǎo)出2D dxf或dwg文件以形成3D模型的基礎(chǔ)。此外,3D模型可能很復(fù)雜,有時(shí)甚至很笨拙。在某些程序中, 裝配體的每個(gè)元素都帶有自己的3D平面及其所有零件的結(jié)構(gòu), 并且在同一屏幕上具有10個(gè)或更多模具的零件,有時(shí)很難為所 有零件識(shí)別零件本身平面,軸和點(diǎn)的描述。如果至少其中一些 可以關(guān)閉,但不能關(guān)閉;并非總是提供選擇性關(guān)閉。
一些主要的軟件程序能夠執(zhí)行有限元分析(FEA),這是一個(gè)很好的工具,其中可以考慮零件或模具上的應(yīng)力。該軟件可以根據(jù)需要計(jì)算從任一側(cè)施加到零件或模具結(jié)構(gòu)上的應(yīng)力和應(yīng)變。它可以生成故障模擬并確定產(chǎn)生此事件所需的壓力,應(yīng)力或屈曲量。依靠應(yīng)用程序方法和所用軟件,它可以計(jì)算零件應(yīng)力負(fù)荷的最細(xì)微差別,并顯示可以在何處改進(jìn)設(shè)計(jì)。
4-4-1 折疊和展開軟件,空白開發(fā)
零件的形成對(duì)于模具設(shè)計(jì)者和模具制造者來說通常是一個(gè)巨大的難題。太多的變量可能威脅著每個(gè)這樣的操作:模具之間的間隙,模具的速度,成型材料的響應(yīng)速度,應(yīng)變硬化,僅舉幾例。幸運(yùn)的是,有一些具有成形模擬功能的軟件包,在金屬?zèng)_壓領(lǐng)域中可用于計(jì)算平面毛坯和開發(fā)工具。這種軟件可以在幾秒鐘內(nèi)生成復(fù)雜零件的空白布局,并根據(jù)命令找出帶材上的最佳布置。
優(yōu)質(zhì)的成型軟件能夠評(píng)估相關(guān)區(qū)域的金屬變薄,找出材料將在哪里拉伸,預(yù)測(cè)變形,屈曲和撕裂,確定回彈量或建議最經(jīng)濟(jì)地利用金屬進(jìn)行適當(dāng)?shù)呐帕蠋Р摹U郫B或展平模型通常是它們的日常任務(wù)。
有些人可能會(huì)使用該軟件進(jìn)行毛坯開發(fā)和模具設(shè)計(jì),而另一些人可能會(huì)將該軟件用于報(bào)價(jià)目的,材料可成型性評(píng)估或只是確定模具中所需的工位數(shù)量。該軟件可以進(jìn)一步用于工具的設(shè)計(jì)和分析,并且可能已經(jīng)在設(shè)計(jì)階段就向用戶警告相關(guān)領(lǐng)域。可行性研究可以與設(shè)計(jì)優(yōu)化一起進(jìn)行。
4-4-2 有限元分析軟件(FEA)
某些FEA可能被認(rèn)為已過時(shí),因?yàn)樗鼈儠?huì)遇到設(shè)備移動(dòng)中的復(fù)雜問題,并對(duì)其應(yīng)用所有教科書條件和教科書限制,而不考慮數(shù)據(jù)的準(zhǔn)確性。這種分析嚴(yán)格來說是理論上的,與現(xiàn)實(shí)世界沒有多大關(guān)系。
其他分析不僅考慮了已知力施加在設(shè)備上的應(yīng)力,還考慮了應(yīng)力。他們還評(píng)估了特定產(chǎn)品或設(shè)備所針對(duì)的環(huán)境所產(chǎn)生的未知和未公開的壓力。例如,評(píng)估掉落在桌子上的手機(jī)的壓力時(shí)要考慮到跌落,碰撞和設(shè)備損壞。這種分析稱為事件模擬。
這樣的有限元分析不僅可以確定零件組件的線性動(dòng)力學(xué)或結(jié)構(gòu)分析。它可以進(jìn)一步確定對(duì)單個(gè)產(chǎn)品或零件組裝的熱,靜電, 機(jī)械和其他影響。
一般來說,這里的計(jì)算機(jī)可以幫助我們?cè)O(shè)計(jì)更好的零件和設(shè)計(jì)更好的制造程序。它們是正確使用的好工具。
有時(shí)可以將零件的整個(gè)組件從一種改編復(fù)制到另一種組件, 并根據(jù)新的需求進(jìn)行更改,或者可以在需要的地方導(dǎo)入標(biāo)準(zhǔn)化的零件庫,可以創(chuàng)建3D橫截面圖來說明零件在復(fù)雜組件中的放置,為自己。
除了這些明顯的好處外,還可以向尚未展示過的產(chǎn)品展示其詳細(xì)功能,并向觀眾展示其詳細(xì)功能,盡管他們非常有能力, 但是卻沒有經(jīng)過培訓(xùn)可以在2D線條網(wǎng)絡(luò)中看到真實(shí)的物體繪畫,不過是那些愿意掌握這種技術(shù)的人的另一種收獲。非常了解一個(gè)未來的零件,即使我們知道它的弱點(diǎn),并且可以在我們構(gòu)建第一個(gè)原型之前很長的時(shí)間就可以改善它們,這是非常有價(jià)值的。
同樣,簡單的數(shù)碼相機(jī)是對(duì)工具制造商,工具設(shè)計(jì)人員或工程師的工作的另一項(xiàng)增強(qiáng)。借助于這種不需要的物品,可以將組裝過程記錄在案并存儲(chǔ)在計(jì)算機(jī)中,從那里可以拉動(dòng)它們進(jìn)行重新運(yùn)行或進(jìn)行其他調(diào)整。
今天的計(jì)算機(jī)世界將帶來美好的未來。我們只需要學(xué)習(xí)利用所有可用的工具,就必須設(shè)計(jì)出從中獲利的方法和手段。
2.外文資料原文(與課題相關(guān),至少1萬印刷符號(hào)以上):
Handbook of Die Design Ivana Suchy
Copyright 2006
ISBN 0-07-146271-6
516th pages-525th pages
CHAPTER ELEVEN
Many of them graduated into semiautomatic checking systems, where by positioning a probe they could derive the other dimensions off that location. The probe takes up the gap of the opening and the accuracy is quite impressive, yet the whole process may still be quite slow for today’s manufacturing floor.
All these people are extremely valuable where spot-checking of the production is needed to make sure every tool and every machine is running correctly. But to do a first piece inspection this way, to measure every single opening, to observe if it fits within tol- erance ranges of the print, while trying to ignore a score of workers waiting lined up behind their backs, which is an incredibly frustrating, expensive, and demanding process. It is also a waste of those people’s talents.
An automatic, in-die measuring and quality control system is beginning to gain ground in metal stamping industry. Not that it is such a new method of control, but rather it was implemented everywhere else but in the metal stamping field. Only now, automated check- ing and testing, automated quality monitoring, and even automated quality improvements during the press run are being recognized as valid processes, worth implementing, and worth improving upon.
Every automated quality control system should be capable of collecting data obtained by the sensors, lasers, or other visually inspecting devices, and to process this information immediately, in order to feed the results back into the monitoring or controlling devices. True, some older PLC’s may be too slow for today’s high- speed presses and many failures may occur before the company leadership will stop blaming the shop personnel and will divert their attention to the responsiveness and a degree of obsoleteness of the equipment they are using.
A well-designed, automated quality control system should use the latest technology and be selected in replacement of old, inadequate arrangements. Such equipment must be capa- ble of performing all the calculations needed to evaluate and arrange the data reported by sensors into meaningful bits of information. On the basis of these, the system should be able to distinguish a bad part from a good one, and send the bad part into a different storage bin for either further evaluation, or for scrap. The system should bear in memory the amount of rejects thus created and if, for example, too many bad parts are emerging from the same die station, a good system should display a warning for the operator and perhaps even shut the press down, if needed.
However, not all machines can be stopped at any time. Some may be tied to a whole conglomerate of feeding devices and stopping the process may wreak havoc between them. For this reason, a shutdown protocol has to be designed and be ready to be implemented should such a scenario occur. This protocol must determine which feeding device will be shut down first and which is to follow, which error messages should be displayed, and the final shut down of power, where needed.
The quality control system must further be capable of gathering all the data and dis- playing it either in a graph form, or as a statistical analysis for SPCs, if not other data inter- pretation. The amount of rejected parts should be accounted for as well, even if separate counters are to be installed at the production line.
A good start along these lines was achieved at the Georgia Tech laboratory, where their SmartImage Sensor Technology of high- performance vision system was developed and is now available for use in various industries. Their cameras are equipped with SmartImage sensors and with embedded PowerPC processors which display an optimum image stability and repeatability even in a high speed, high-resolution inspection environments. The system eliminates joysticks, frame grabbers, and CPU controllers and is relying only on the camera vision, which is trained to sense and report any variations from normal. The cameras are standalone units, small enough to fit one’s palm, yet fully capable of delivering quality control inspection results, coordinating information for motion controllers, producing statistical process control data, plus 1D, 2D verification and reporting.
As an additional equipment, a Smartlink unit, with a capability of accommodating up to 16 SmartImage sensors, can be utilized. The reporting of all cameras can be viewed from any monitor without the need for a computer. Images can be freezed on the screen for detailed inspection, and communication capabilities through standard Ethernet technology is common.
4-5-1 3D Laser Scanning and Reverse Engineering
Few years back, when the coordinate measuring machines (CMM) took over the quality control areas of manufacturing, they quickly became industry standard. It seemed that everyone had them and everyone used them. Unfortunately, already at that time, they were becoming obsolete. Perhaps they were developed a bit too late, perhaps the cost con- sciousness was spreading too fast, the machines were soon standing aside and many man- ufacturers were back to calipers and spot checking.
They reasoned, “after all, if I am using a precision-made die, or a numerically controlled equipment that’s supposed to be accurate within .005 in. [0.13 mm], or .003 in. [0.08 mm], or whatever else, I don’t need to check the outcome anymore.” And hoping for the best, comparing the newly produced part to the previous product from the same tool against a lighted window, the production run was produced and delivered.
As a step between the next move forward, touch-dependent computerized applications emerged. With an arm, these could be guided to touch the actual 2D and later 3D parts, while the computer interpreted the data, calculated the results, and came up with the eval- uation, printing all the forms, statistics, and other information.
Afterwards, a 3D laser scanning began. The advantage of having the part compared to the original 3D CAD file and the ease of the process quickly lured some pioneers into pur- chasing this equipment, in spite of the steep price tag it bore. When compared to CMM machines, laser scanners were found more precise, some boasting a .001 in. [0.025 mm] accuracy and some perhaps even less than that. Where a CMM 3D probe had to be guided over the complete surface of the scanned part slowly, step by step taking in the distances, the gaps, the valleys; laser scanning traverses in lines moving alongside the part. Since the laser ray is not touching the object which it is scanning, little particles of dirt do not ham- per its function. This is not so with the CMM machines, which are literally thrown off bal- ance by a spec of dirt or any other foreign matter on the part.
Another advantage of 3D laser scanning is the reverse engineering. This is a process, which allows for measuring of the actual product and transferring the data into a computer, where a 3D CAD model is built from thus gathered information. With the aid of reverse engineering, copies of actual objects can be produced in the computer’s memory to be machined, or otherwise fabricated later in production.
Reverse engineering is used quite often where a manufacturer supplies his or her cus- tomer with a part submitted by another manufacturer. Often, these are original equipment manufacturers (OEMs), who are no longer interested in this or that production and yet the parts need to be made somehow. Automobile-serving industry is one of the major cus- tomers for this type of application.
4-5-2 Comparison of the Camera Vision and 3D Laser System of Quality Control
Some may ask which is a better tool for automated quality control in today’s industrial envi- ronment. This is a great question, to which an answer is not easily obtainable. First of all, the area of application must be evaluated. Where the defects we are watching for are bright and outstanding, with relatively low levels of light needed to detect them, a camera is a bet- ter solution of the two. With darkened defects, needing a lot of light to be detected at all, or with defects extremely small in size, laser quality control systems should be preferred.
Both, either very bright or very dark areas are easily viewable with a single laser scan- ner. Visibility of defects can be enhanced by the changes in its wavelength. Quality of detection (across the line) is consistent, regardless of the speed of the laser’s line speed. Scanning can be done in ambient light, or using high power lighting.
On the other hand, the cost of laser scanning system is higher than that of the camera vision system. Lasers can also be found more expensive to run when using their scanning capabilities on predominantly bright fields. Their detecting capabilities for opaque, mul- ticolored films is diminished as laser systems are color-blind; a white light is preferable with them.
Vision systems (i.e., cameras) are cheaper to buy and easier to install. Their functions are easy to learn as well, with problems surfacing only with aligning several cameras in a multicamera arrangement. However, since a single camera is usually not adequate, a multicamera system is most often a must.
Camera is sensitive to light coherency and for that reason it may need shrouding from the ambient light. Multicamera systems often cause problems because of the possibility of their alignment with the light source. This may cause inconsistencies from one camera to another and varying accuracy of detection may be experienced. These differences may increase with higher amounts of pixels.
Visual inspection may depend on a greater power consumption. Where upgrades are deemed necessary, new equipment should be resorted to, as upgrading op
收藏