日產(chǎn)1200td氧化鋁循環(huán)流態(tài)化焙燒爐設(shè)計畢業(yè)論文
《日產(chǎn)1200td氧化鋁循環(huán)流態(tài)化焙燒爐設(shè)計畢業(yè)論文》由會員分享,可在線閱讀,更多相關(guān)《日產(chǎn)1200td氧化鋁循環(huán)流態(tài)化焙燒爐設(shè)計畢業(yè)論文(33頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 本科課程設(shè)計說明書 題目:日產(chǎn)1200t/d氧化鋁循環(huán)流態(tài)化焙燒爐 學(xué) 院:__材料學(xué)院__ 專 業(yè):____ 班 級:_ 學(xué) 號: 學(xué)生姓名:_ 指導(dǎo)教師:_ 內(nèi)容摘要 氧化鋁作為一種基礎(chǔ)的工業(yè)原材料,對國民經(jīng)濟的發(fā)展起著相當(dāng)重要的作用,而我國氧化鋁生產(chǎn)無論從數(shù)量還是質(zhì)量上都不能滿足國內(nèi)市場的需要,每年都要大量進口,同時,國內(nèi)的氧化鋁生產(chǎn)成本居于世界前列。如何開展國內(nèi)的氧化鋁焙燒系統(tǒng)研究是一項重要的課題。 本
2、文首先對國內(nèi)外的焙燒方式進行了分析和比較,并對目前世界上主要的三種流態(tài)化焙燒方式和裝置現(xiàn)狀進行了概述。然后根據(jù)流程圖對焙燒系統(tǒng)流程進行了分析,了解了濕物料的脫水過程及其工藝性能; 通過對系統(tǒng)進行物料及能量平衡計算并作比較,掌握了焙燒系統(tǒng)的物料及能量的分布情況,為焙燒系統(tǒng)的設(shè)計提供了依據(jù)。同時還分析討論了系統(tǒng)中各參數(shù)變化對系統(tǒng)運行的影響。 關(guān)鍵詞 氧化鋁,焙燒爐,熱工 Abstract Alumina as a basis for industrial raw
3、materials, the development of the national economy plays an important role, and China's alumina production in terms of quantity or quality can not meet the needs of the domestic market, every year a large number of imports, while domestic Alumina production cost of living in the forefront of the wor
4、ld. How to carry out domestic alumina roasting system is an important issue. This paper on the baking at home and abroad conducted an analysis and comparison, and the world's three major fluidization roasting methods and devices had outlined the status quo. Then under the baking system process flow
5、chart on an analysis of the wet materials to understand the dehydration process and its technology performance through the system of materials and energy balance calculations and for comparison, master of the baking system of materials and energy distribution, Roasting system design provides a basis
6、. Also discussed the parameters of the system change on the impact of the system is running. Keywords Alumina,Thermal,Roaster 目目錄 第一章:概述 1-1、流態(tài)化焙燒新技術(shù)在國內(nèi)外發(fā)展概況…………………3 1-2、我國氧化鋁焙燒技術(shù)和裝置現(xiàn)狀………………………4 1-3、氧化鋁循環(huán)焙燒爐工藝特性、能耗狀況………………5 1-4、氧化鋁循環(huán)焙燒爐工作原
7、理……………………………6 第二章:氧化鋁循環(huán)焙燒爐熱工藝性能 2-1、氧化鋁循環(huán)焙燒爐工藝流程介紹………………………7 2-2、氫氧化鋁的干燥和預(yù)熱的工藝流程、熱工特點………8 2-3、氫氧化鋁的焙燒的工藝流程、熱工特點………………9 2-4、氫氧化鋁的冷卻的工藝流程、熱工特點………………10 2-5、氧化鋁循環(huán)焙燒爐工藝特點、熱工特點、熱效能……10 2-6、氧化鋁循環(huán)焙燒爐工藝性能與氣態(tài)懸浮焙燒爐工藝性能、熱工特點比較…………………… ………………11 2-7、氧化鋁循環(huán)焙燒爐工藝性能與回轉(zhuǎn)窯工藝性能及熱工特點比較…………………………………………………13 第
8、三章:氧化鋁循環(huán)焙燒爐熱工計算 3-1、氧化鋁循環(huán)焙燒爐工藝計算的原始數(shù)據(jù)及條件…… 13 3-2、氧化鋁循環(huán)焙燒爐工藝過程的物料平衡及物料平 衡表……………………………………………………15 3-3、燃料的燃燒計算及結(jié)果表…………………………… 16 3-4、氧化鋁循環(huán)焙燒爐工藝過程的熱平衡計算………… 18 3-5、氧化鋁循環(huán)焙燒爐工藝過程的熱平衡計算表……… 21 3-6、氧化鋁循環(huán)焙燒爐工藝過程的熱平衡與氣態(tài)懸浮焙燒 爐的熱平衡比較………………………………………………22 第四章:氧化鋁循環(huán)焙
9、燒爐設(shè)計熱耗與實際熱耗的效能 分析 4-1、熱力學(xué)分析…………………………………………… 25 4-2、測量誤差分析………………………………………… 26 4-3、影響產(chǎn)品質(zhì)量的因素分析…………………………… 28 結(jié)束語…………………………………………………………………29 參考文獻………………………………………………………………29 第一章 概述 1-1 流態(tài)化焙燒新技術(shù)在國內(nèi)外發(fā)展概況 氧化鋁生產(chǎn)采用流態(tài)化焙燒技術(shù)
10、的試驗研究開始于20世紀(jì)40年代,近40 年來,流態(tài)化焙燒在工業(yè)生產(chǎn)中顯示出其優(yōu)質(zhì)、低耗的強大優(yōu)勢,技術(shù)發(fā)展十分 迅速。目前廣泛應(yīng)用于氧化鋁生產(chǎn)的焙燒技術(shù)為美國的閃速焙燒、德國的循環(huán)焙 燒、丹麥的氣態(tài)懸浮焙燒三種,其中氣態(tài)懸浮焙燒技術(shù)起步最晚,但技術(shù)先進, 代表著最新流態(tài)化焙燒水平,號稱“第三代”。然而,因其在工業(yè)生產(chǎn)中應(yīng)用較 晚,實際運行中,仍然存在許多問題,若能很好地解決,進一步完善其工藝,則 氣態(tài)懸浮焙燒技術(shù)無疑是氧化鋁生產(chǎn)的最佳選擇。我國自1987年山西鋁廠引進 第一臺美鋁閃速焙燒爐以后,十多年來,相繼又引進了德國魯奇循環(huán)流態(tài)化焙燒 爐、丹麥?zhǔn)访芩箽鈶B(tài)懸浮焙燒爐,其中以
11、氣態(tài)懸浮焙燒爐為主,占到總數(shù)的70%。 目前國內(nèi)氧化鋁幾乎全部采用流態(tài)化焙燒。 當(dāng)今世界成功地應(yīng)用于工業(yè)生產(chǎn)的流態(tài)化焙燒爐有四種:①美國鋁業(yè)公 司的流態(tài)閃速焙燒爐(F.F.C)。②原西德魯奇公司的循環(huán)流態(tài)焙(C.F.C). ③丹麥?zhǔn)访芩构镜臍怏w懸浮焙燒爐(G.S.C)。④法國弗夫卡樂巴柯克公司的 氣體懸浮焙燒爐(F.C.B)。前三種流態(tài)化焙燒爐在世界上得到了廣泛采用,我 國也相繼在中鋁山西分公司、中州分公司、蘋果分公司和貴州分公司引進了前三 種爐型。已經(jīng)投用的流態(tài)化焙燒爐設(shè)計能力為國內(nèi)焙燒氧化鋁總規(guī)模的80%以 上,采用流態(tài)化焙燒爐已成為我國氧化鋁工業(yè)必然的發(fā)展趨勢。
12、 流態(tài)化焙燒技術(shù)與回轉(zhuǎn)焙燒窯相比不僅熱耗低,而且產(chǎn)品質(zhì)量好、投資省、占地面積小,對環(huán)境污染輕和設(shè)備簡單、使用壽命長、維修費用低等明顯的優(yōu)點。我國新建的山西鋁廠,中州鋁廠和蘋果鋁廠均采用了世界上先進的流態(tài)化焙燒技術(shù)。自建成投產(chǎn)運行以來,運行良好,各項技術(shù)經(jīng)濟指標(biāo)先進,取得了良好的節(jié)能效果。而后,鄭州鋁廠,山東鋁廠和貴州鋁廠也相繼各引進了一套流態(tài)化焙燒技術(shù)和裝置,以代替原有的回轉(zhuǎn)焙燒窯,降低能耗。提高產(chǎn)能和技術(shù)經(jīng)濟指標(biāo)。 1-2 我國氧化鋁焙燒技術(shù)和裝置現(xiàn)狀 我國近年來所建的氧化鋁廠技術(shù)裝備已達到當(dāng)今世界先進水平,氧化鋁循環(huán)焙燒技術(shù)主要引進的是魯奇循環(huán)焙燒爐(C.F.C),多數(shù)的鋁
13、業(yè)公司都是先引進后消化吸收并創(chuàng)新。在世界氧化鋁工業(yè)中,目前90%以上的氧化鋁生產(chǎn)廠(包括美鋁、加鋁所屬)均采用拜耳法處理以三水鋁石為主的低硅鋁土礦生產(chǎn)氧化鋁。而我國則分別采用聯(lián)合法、燒結(jié)法處理的我國高硅一水硬鋁石鋁土礦和采用拜耳法處理我國低硅一水硬鋁石和進口國外低硅三水鋁石鋁土礦生產(chǎn)氧化鋁。目前,國內(nèi)、外主要技術(shù)裝備有:氧化鋁生產(chǎn)的技術(shù)裝備,隨著生產(chǎn)方案不同而不同。燒結(jié)法主要用于中國和俄羅斯處理高硅鋁土礦或霞石生產(chǎn)氧化鋁,其總產(chǎn)量約世界總產(chǎn)量的10%。世界其他鋁業(yè)公司均采用拜耳法生產(chǎn)氧化鋁。因此,這里僅對拜耳法的技術(shù)裝備作簡要比較。拜耳法的技術(shù)裝備主要反映在工藝流程中的主要工藝過程。即:鋁土礦
14、溶出、赤泥分離洗滌、種子分解、母液蒸發(fā)和氫氧化鋁焙燒工序。 我國各大氧化鋁廠在氧化鋁生產(chǎn)過程中,氫氧化鋁焙燒是主要工序之一,無論是采用拜耳法還是燒結(jié)法或是聯(lián)合氫氧化鋁焙燒是不可缺少的最后一到工序,而且是主要耗能工序之一,一般占13%~26%MJ/Kg。 它的技術(shù)和裝置大體有三類: a老式回轉(zhuǎn)焙燒窯,熱耗最高,一般在5.024~5.443 MJ/Kg- Al2O3; b?帶有旋風(fēng)預(yù)熱器的回轉(zhuǎn)焙燒窯,熱耗居中,一般在3.978~4.187 MJ/Kg Al2O3; ? ?c液態(tài)化焙燒爐,熱耗最底,一般在2.913~3.349 MJ/Kg Al2O3。 20世紀(jì)80年代以來,我國
15、山鋁公司、蘋果鋁廠、中州鋁廠、山東鋁廠、貴州鋁廠、鄭州鋁廠等幾大廠先后從國外引進了11臺氫氧化鋁焙燒爐,包括美國鋁業(yè)K.H.D公司為代表的為稀相換熱閃電焙燒與濃相流態(tài)化相結(jié)合;以F.L.S公司為代表的稀相換熱氣體懸浮焙燒;以LURGI公司為代表的循環(huán)流態(tài)化焙燒三種爐型。國內(nèi)氫氧化鋁流態(tài)化的發(fā)展,一是引進,二是消化創(chuàng)新,但這兩者都必須結(jié)合國內(nèi)氧化鋁工業(yè)的實情,我國應(yīng)在消化流態(tài)化焙燒技術(shù)的基礎(chǔ)上創(chuàng)新,形成有自己特色的焙燒爐裝置。1996年,山鋁公司為改變焙燒工序能耗高,環(huán)境污染嚴(yán)重的狀況,引進了德國魯奇特公司1600t/d循環(huán)爐,貴州鋁廠和蘋果鋁廠也相繼引進可該技術(shù)和裝置,大大提高了我國氫氧化鋁焙
16、燒生產(chǎn)控制水平。經(jīng)過數(shù)年的探索與改進,流態(tài)化焙燒爐適應(yīng)了我國氧化鋁生產(chǎn)的特點,基本上取代了傳統(tǒng)的回轉(zhuǎn)窯。 由于,我國在近10年氧化鋁工業(yè)的發(fā)展中,不斷了解、認(rèn)識、引進、實踐當(dāng)今國際先進的的技術(shù)裝備,使氧化鋁生產(chǎn)的技術(shù)裝備水平有長足發(fā)展。近兩年所建廠的技術(shù)裝備水平已達到當(dāng)今世界先進水平,其中鋁土礦高溫溶出的技術(shù)裝備達到國際領(lǐng)先水平,至2005年底,中國鋁業(yè)公司氧化鋁產(chǎn)能787萬噸,電解鋁產(chǎn)量210萬噸,成為僅次于美鋁和加鋁的世界第三大鋁業(yè)公司,中鋁公司目前也已形成完整的鋁工業(yè)布局,氧化鋁和電解鋁的產(chǎn)能基本平衡。同時,國內(nèi)經(jīng)濟發(fā)展速度快,金屬鋁消費市場旺盛,迄今為止,國內(nèi)氧化鋁生產(chǎn)的原料、動力和
17、人力仍存在一定的價格優(yōu)勢,因此,境外資源開發(fā)和投資建廠有較大發(fā)展空間,但是我國鋁土礦屬高硅一水硬鋁石,其處理難度及其能耗比國外高,當(dāng)然也還具有進一步節(jié)能降耗的空間。 1-3 環(huán)流態(tài)化焙燒爐工藝性能,能耗狀況 a 產(chǎn)品質(zhì)量好。 這是由于爐襯磨損少,德國循環(huán)流態(tài)化焙燒產(chǎn)品中SiO2含量比回轉(zhuǎn)窯產(chǎn)品約低0.006%,不同粒級氫氧化鋁焙燒均勻,相同比表面積的氧化鋁中α- Al2O3含量低,與回轉(zhuǎn)窯比,流態(tài)化焙燒的產(chǎn)品中小于45μm粒級增加約4%,而小于15μm的粒級沒有改變。各類型流態(tài)化焙燒爐都能制取砂狀氧化鋁。 b 投資少。 流化床焙燒爐單位面積產(chǎn)能高、設(shè)備緊湊、占地少。它的機電
18、設(shè)備重量僅為回轉(zhuǎn)窯的1/2,建筑面積僅為1/3~2/3,投資比回轉(zhuǎn)窯低40~60%(以1983年國內(nèi)價格計),國外發(fā)表數(shù)據(jù),美國少50~70%,西德少20%,法國少15~20%。 c 設(shè)備簡單、壽命長、維修費用低。 流態(tài)化焙燒系統(tǒng)除了風(fēng)機、油泵與給料設(shè)備之外沒有大型的轉(zhuǎn)動設(shè)備。焙燒爐內(nèi)襯使用壽命可長達10年以上。維修費用比回轉(zhuǎn)窯低得多。如德國的循環(huán)流態(tài)化焙燒爐的維修費僅為回轉(zhuǎn)窯的35%。 d對環(huán)境污染輕。 燃料燃燒完全,過??諝庀禂?shù)低,廢氣中氧的含量低(1~2%),SO2和NOX的生成量均低于回轉(zhuǎn)窯。 e 自動化水平高。 流態(tài)化焙燒爐(固定式)較回轉(zhuǎn)窯易于實現(xiàn)自動化。集中一
19、分散系統(tǒng)可完成全套裝置的起動、生產(chǎn)控制、設(shè)備保護、停車,可保障設(shè)備的安全運行和生產(chǎn)的均衡穩(wěn)定進行。 f熱效率高、熱耗低。 熱耗3.1~3.2GJ/t,流態(tài)化焙燒爐中燃料燃燒穩(wěn)定,溫度分布均勻,氫氧化鋁和燃燒產(chǎn)物以及高溫氧化鋁和助燃空氣間接觸密切,換熱迅速,空氣預(yù)熱溫度高,過??諝庀禂?shù)低,燃料燃燒溫度提高,系統(tǒng)熱效率大大提高,廢氣量則隨之減少,加之散熱損失只有回轉(zhuǎn)窯的30%,流態(tài)化焙燒爐的熱效率可達75~80%,而回轉(zhuǎn)窯最好情況下的熱效率也低于60%,流態(tài)化焙燒爐單位產(chǎn)品熱耗比回轉(zhuǎn)窯降低約1/3。國外回轉(zhuǎn)窯熱耗先進水平約為4.186GJ/t- Al2O3,而國內(nèi)回轉(zhuǎn)窯焙燒熱耗約為5.032G
20、J/t- Al2O3。 循環(huán)焙燒爐1997年9月投用,節(jié)能效果非常明顯,1997年8月回轉(zhuǎn)窯焙燒和2000年8月循環(huán)焙燒在油耗,電耗,水耗方面的對比如下表所示 循環(huán)爐與焙燒窯指標(biāo)對比 表1.1 單位 循環(huán)爐 回轉(zhuǎn)窯 差值 油耗 ㎏/tAo 82.99 127.68 -44.69 電耗 kwh/tAo 20.21 30.74 -10.53 上水耗 m3/tAo 0.20 1.61
21、 -1.41 回水耗 m3/tAO 0 8.30 -8.30 通過上述循環(huán)焙燒和回轉(zhuǎn)窯節(jié)能的比較看,循環(huán)焙燒大大降低了生產(chǎn)成本,提高了產(chǎn)品質(zhì)量。有利于環(huán)境保護。用循環(huán)焙燒爐代替回轉(zhuǎn)窯焙燒是氧化鋁焙燒的發(fā)展方向。 1-4 氧化鋁循環(huán)焙燒爐工作原理 流化態(tài)焙燒爐工作的基本原理是利用流態(tài)化技術(shù),使參與反應(yīng)熱,質(zhì)傳遞的氣體和固體充分接觸,實現(xiàn)它們之間最快的傳質(zhì)、傳熱和動量,傳遞速度,獲得最大的設(shè)備生產(chǎn)能力。 流化床的形成 當(dāng)流體的表觀速度繼續(xù)增大到一定值,床層開始膨脹和變松,全部顆粒都懸浮在向上流動的流體中,形成強烈攪混流動
22、。這種具有流體的某些表觀特征的流-固混合床稱為流化床,在氣-固流化床中,形成顆粒強烈翻滾,故又稱為沸騰床。 流化范圍與操作速度 從臨界速度開始流態(tài)化,到帶出速度下流化床開始破壞這一速度范圍。它是選擇操作流態(tài)化速度的上下限。流態(tài)化范圍越寬,流化床的操作越穩(wěn)定。這一范圍大小可以用帶出速度Uout與臨界流態(tài)化速度Uin的比(Uout/Uin)來表征。理論和實踐證明,顆粒越細則流態(tài)化范圍越小,不規(guī)則寬篩分物料的流態(tài)化范圍比球形粒子的要小。 圖1—1 第二章 氧化鋁循環(huán)焙燒爐熱工性能 2-1 氧化鋁循環(huán)焙燒爐工藝流程介紹 氧化鋁循環(huán)焙燒是以稀相為主,稀濃相結(jié)合的焙燒裝
23、置,是一種結(jié)合式冶金爐,一般由物料干燥脫水預(yù)熱,主反應(yīng)爐和成品冷卻三大系統(tǒng)組成。循環(huán)爐工藝流程可簡述為一級文丘干燥脫水加一段載流預(yù)熱,循環(huán)流化床焙燒,一級載流冷卻加流花床冷卻。 工藝流程包括三個部分:a氫氧化鋁的干燥和預(yù)熱 b氫氧化鋁的焙燒 c氧化鋁的焙燒。工藝流程圖如下: 2-2 氫氧化鋁的干燥和預(yù)熱的工藝流程、熱工特點 1) 一級干燥 來自分解車間的濕氫氧化鋁,由皮帶輸送機送到焙燒爐氫氧化鋁小倉110,再由螺旋喂料機062將物料喂入文丘里一級干燥器120。在此物料與二級干燥器來的熱廢氣混合,蒸發(fā)掉濕氫氧化鋁的附著水。 a) 電收塵器 熱廢氣攜帶已被干燥的干氫氧化鋁與廢
24、氣組成含塵廢氣流,進入兩級靜電收塵器(ESP)122。在第一級機械收塵,夾帶的大部分固體物料被收下,剩余的含塵廢氣進入第二級靜電收塵器,用靜電除塵方法將廢氣進行凈化,達到排放標(biāo)準(zhǔn)后排放。 b) 干氫氧化鋁的主流向 由第二級電收塵器收下的固體物料,通過螺旋輸送機063/063.1和064/064.1 輸送到機械收塵器下部,匯同機械收塵收下的固體物料進入空氣斜槽124??諝庑辈?24排出的干氫氧化鋁經(jīng)翻板閥124.13,送入空氣提升機125。然后,被羅茨風(fēng)機078提供的壓縮風(fēng)吹送起來,經(jīng)管道126到旋風(fēng)收塵器127,經(jīng)127收下的大部分物料,通過喂料密封槽128被送入文丘里二級干燥
25、器130的下部。經(jīng)127凈化的空氣,通過管道129,進入二次風(fēng)旋風(fēng)收塵器152,最終做為二次燃燒空氣。 c) 電收塵(ESP)細粉 1#爐電收塵器收下的細粉可以通過調(diào)速回轉(zhuǎn)閥091和092排出,經(jīng)螺旋輸送機065、065.1、065.2輸送到流化床冷卻器155的第一室(用來調(diào)節(jié)產(chǎn)品的灼減值,降低消耗)。 d) 二級干燥器的旁路 為了調(diào)節(jié)爐內(nèi)溫度和電收塵進口溫度,來自一級干燥器的一小部分物料可以經(jīng)調(diào)速回轉(zhuǎn)閥093和管道137,直接進入流化床焙燒爐140或直接經(jīng)137、138管道進入管道151(1#爐);經(jīng)137管道、回轉(zhuǎn)閥094和139管道進入146混料槽(2#爐)。
26、2) 二級干燥 進入二級文丘里干燥器130的干氫氧化鋁與來自循環(huán)旋風(fēng)收塵器142的熱廢氣相混合,并被部分脫水和預(yù)焙燒。氣體和物料將再一次在130后面的旋風(fēng)收塵器132中進行分離。經(jīng)132分離出來的預(yù)焙燒氧化鋁,通過下料管134,進入流化床焙燒爐140。下料管上的翻板閥135、136保證了焙燒爐的壓力密封,防止熱廢氣反竄。出132的廢氣經(jīng)管道133,進入一級干燥器120。 萬一發(fā)生喂料故障,可以用注入被蒸汽霧化的應(yīng)急冷卻水到管道133和干燥器120的辦法,來控制廢氣溫度。 2-3 氫氧化鋁的焙燒的工藝流程、熱工特點 1)氫氧化鋁的焙燒的工藝流程 經(jīng)預(yù)熱和部分脫水的氫氧化鋁在
27、流化床焙燒爐140中進行最終焙燒。焙燒所需熱量是由燃油(重油)在流化床焙燒爐直接燃燒所產(chǎn)生的;供燃燒用的燃油,通過插入流化床焙燒爐140下部的四支油槍噴入流化床,用蒸汽將燃油霧化;焙燒爐溫度可以通過溫度控制器保持穩(wěn)定。 燃油燃燒所需要的空氣,分為一次風(fēng)和二次風(fēng)。一次風(fēng)是由風(fēng)機070、071提供,這部分燃燒用風(fēng)通過流化床冷卻器155內(nèi)間接加熱盤管,經(jīng)管道157導(dǎo)入流化床焙燒爐140中。二次風(fēng)作為補充燃燒所需空氣不足部分,通過140上方爐壁進入流化床焙燒爐140中。 二次風(fēng)主要由風(fēng)機073、074提供。二次風(fēng)首先作為流化床冷卻器155和156的流化風(fēng),最終經(jīng)管道151、二次風(fēng)旋風(fēng)收塵器1
28、52和管道153,被導(dǎo)入流化床焙燒爐140中。輔助風(fēng)機072和空氣提升風(fēng)機078也做二次風(fēng)用,同樣被正常引入管道151。由于焙燒爐中強烈的混合和熱交換,焙燒溫度是燃燒溫度和物料溫度之間的混合溫度。這個溫度可以調(diào)節(jié)和穩(wěn)定保持在預(yù)設(shè)范圍內(nèi)。 在爐子下半?yún)^(qū),存在一個固體物料濃度較高的流化床,這有利于燃油的燃燒和增加物料在爐內(nèi)平均停留時間。在焙燒爐上半?yún)^(qū),二次風(fēng)進口上方,隨著固體物料擴散到焙燒爐140的頂部,固體物料濃度隨之降低。 熱氣流進入再循環(huán)旋風(fēng)收塵器142,固體物料在那里得到分離,分離出的熱氧化鋁,經(jīng)密封槽143重新進入流化床焙燒爐。在由140、142和143組成的整個焙燒階段中,固
29、體物料的再循環(huán)導(dǎo)致了產(chǎn)品和氣流溫度幾乎一致。 密封槽143的流化風(fēng)由密封槽風(fēng)機076提供,保證了再循環(huán)的需要。從143中取出部分焙燒段的物料作為成品,通過出料閥144排入氧化鋁冷卻系統(tǒng)。用壓差控制器來控制出料量,保持焙燒爐內(nèi)壓差恒定。 2)氫氧化鋁的焙燒的熱工特點 全部脫除物料中的結(jié)晶水、附著水和進行一系列的相變過程,從而生產(chǎn)出一種由 γ-Al2O3和α-Al2O3混合物構(gòu)成的氧化鋁產(chǎn)品。 2-4、氫氧化鋁的冷卻的工藝流程、熱工特點 1)氫氧化鋁的冷卻的工藝流程 從焙燒系統(tǒng)排出的氧化鋁,經(jīng)二次風(fēng)旋風(fēng)收塵器152和流化床冷卻器155、156,被冷卻到約80~
30、100℃。經(jīng)鋁氧皮帶送入鋁氧儲存大倉. 一次風(fēng)經(jīng)冷卻器三個管道調(diào)節(jié)器,壓送到流化床冷卻器155的三個室中,在那里空氣和熱氧化鋁進行間接熱交換。二次風(fēng)為氧化鋁直接冷卻和流化床冷卻器155、156六個室流化用風(fēng)。 二次風(fēng)進二次風(fēng)旋風(fēng)收塵器152,在152中,固體物料從二次風(fēng)中分離出來,進入155冷卻器,二次風(fēng)經(jīng)二次風(fēng)管道153,進入焙燒爐140。 2)氫氧化鋁的冷卻的熱工特點 羅茨風(fēng)機之間通過管道226互聯(lián),這樣,即使有一些風(fēng)機不能運行,仍能夠提供穩(wěn)定的風(fēng)源。 2-5 氧化鋁循環(huán)焙燒爐工藝特點,熱工特點,熱效能 1) 循環(huán)爐的核心部分是由反應(yīng)器和旋風(fēng)筒組成的再循環(huán)系統(tǒng)。燃
31、料從反應(yīng)器的下部噴入燃燒提供熱量。焙燒產(chǎn)品帶出的熱量,在流化床冷卻機內(nèi)由一次風(fēng)和二次風(fēng)將其冷卻回收,旋風(fēng)筒廢氣所帶出的熱量,用于兩級預(yù)熱干燥段的氫氧化鋁預(yù)熱干燥及部分物料結(jié)晶脫水,從而回收熱量,降低熱耗。 2) 由于大量的固體物料在不斷地循環(huán),攜帶著大量的蓄熱,因而焙燒溫度均勻,即使在供料或干供油出現(xiàn)短暫波動的情況,也能保持反應(yīng)器和旋風(fēng)筒中的溫度均勻穩(wěn)定。物料循環(huán)的同時增加了在焙燒爐內(nèi)的停留時間,從而可以降低氫氧化鋁的焙燒溫度。通常爐溫控制在950℃左右。 3) 整個系統(tǒng)為正壓操作,無主排風(fēng)機,供風(fēng)采用羅茨風(fēng)機。該風(fēng)機的優(yōu)點是供風(fēng)量幾乎不隨系統(tǒng)的壓力波動而變化,即使?fàn)t內(nèi)出現(xiàn)短暫異常
32、波動,供風(fēng)量也可保持穩(wěn)定,通過增,減氫氧化鋁的下料量或重油的噴入量為調(diào)節(jié)焙燒溫度,生產(chǎn)所需質(zhì)量的氧化鋁。循環(huán)爐的調(diào)節(jié)范圍大,可在46%—100%間調(diào)節(jié)。當(dāng)產(chǎn)量調(diào)低時,助燃空氣量隨之調(diào)低,仍保持較小的空氣過剩系數(shù),因此熱耗仍保持在較低水平。 4) 循環(huán)爐配置緊湊,可有效地利用空間,占地面積較回轉(zhuǎn)窯減少3/4,鋼機構(gòu)框架較其他爐型輕巧,單位投資較回轉(zhuǎn)窯低。由于焙燒溫度較回轉(zhuǎn)窯低,內(nèi)村熱沖擊小,使用壽命長達10年,維修費用約為回轉(zhuǎn)窯的50%。 2-6 氧化鋁循環(huán)焙燒爐工藝性能與氣態(tài)懸浮焙燒爐工藝性能、熱工特點比較 兩種流態(tài)化焙燒爐都是目前國際上最先進的節(jié)能型氧化鋁焙燒爐,與回
33、轉(zhuǎn)窯相比,熱耗降低20-30%,焙燒出的氧化鋁質(zhì)量達到冶金級標(biāo)準(zhǔn),破損率小,比表面積大,比回轉(zhuǎn)窯焙燒的三氧化二鋁質(zhì)量提高很多。 兩種焙燒爐綜合性能比較 表2.1 爐型 德國LURGI公司循環(huán) 丹麥FLS公司 比較項目 流態(tài)化焙燒爐 懸浮焙燒爐 工藝特點及操作參數(shù): 焙燒溫度℃ 950—1150 1150—1250 工藝特點 循環(huán)流態(tài)化焙燒爐 希相換熱氣態(tài)懸浮焙燒
34、系統(tǒng)壓力狀況 鼓風(fēng)流程正壓操作 鼓風(fēng)、排風(fēng)相結(jié)合、負(fù) 壓操作 經(jīng)濟技術(shù)指標(biāo): 月產(chǎn)能力 t/d 1300 1300 單位熱耗Mj/t-Ao 3472 4346 單位電耗Kwh/t-Ao 20.3 16 年運轉(zhuǎn)率% 92—94 80—90 熱效率 %
35、 74—80 72—80 循環(huán)流態(tài)化焙燒爐與懸浮焙燒爐熱工比較 某鋁廠氫氧化鋁循環(huán)流態(tài)化焙燒爐熱平衡 表2.2 熱收入項目 數(shù)據(jù) 熱支出項目 數(shù)據(jù) Mj/t-Ao % Mj/t-Ao % 重油燃燒熱 3099 89.26 三氧化二鋁帶出熱 170.47 4.910 重油帶入的 29.7 0.855 12%的濕氫氧化鋁蒸
36、468.7 13.50 物理量 發(fā)耗熱 12%的氫氧 158.5 4.567 氫氧化鋁分解熱耗 1884 54.263 化鋁附著水 冷卻水帶 14.93 4.30 出爐廢氣帶走熱 495.4 14.271 入物理量 空氣帶入 35.79 1.030 未回收的氧化鋁粉 53.36 1.537 物理熱
37、 塵帶走熱 焙燒爐體散熱 327.2 9.426 72.8 2.O98 合計 3472 100 合計 3472 100 某鋁廠氣態(tài)懸浮焙燒爐熱平衡 表2.3 熱收入項目 數(shù)據(jù) 熱支出項目 數(shù)據(jù)
38、 Mj/t-Ao % Mj/t-Ao % 煤氣燃燒熱 4137 95.2 產(chǎn)品氧化鋁帶出熱 202 4.64 煤氣物理熱 32.523 0.748 10%氫氧化鋁附水蒸發(fā)吸熱 493.955 11.40 10%氫氧化鋁附水熱 29.245 0.676 反應(yīng)耗熱 2362.001 54.30 干氫氧化鋁物理熱 77.684 1.787 粉塵熱損失 68.003 1.564 入爐空氣物理熱 51.934 1.19
39、4 煙氣帶走熱 566.486 13.10 返回物料帶入熱 17.157 0.394 爐體表面散熱 515.383 11.90 差值 138.810 3.10 合計 4346.457 100 合計 4346.457 100 2-7?? 氧化鋁循環(huán)焙燒爐工藝性能回轉(zhuǎn)窯工藝性能,熱工特點比較 表2.4 氧化鋁循環(huán)焙燒爐與回轉(zhuǎn)窯工藝性能,熱工特點比較表:
40、 爐型 流態(tài)化循環(huán)培燒爐 回轉(zhuǎn)窯培燒 比較項目 培燒溫度OC 950—1150 130--1350 熱耗MJ/t-40 <3.2 5.024—5.495 電耗KW.H/t-AO 20 30 水耗m3/t-AO 0.184
41、 1.4 含附水12%的AH熱MJ/Kg-AO 158.5 2.45 煙氣排放濃度mg/Nm3-AO <60 400 工藝特點 循環(huán)流態(tài)化培燒 高溫輻射對流旋轉(zhuǎn)焙燒 系統(tǒng)壓力狀況 鼓風(fēng)流程正壓操作 高溫氣流正壓操作 燃料帶入物理熱MJ/t 29.7 41.4
42、 燃料燃燒MJ/t-AO 3099 4701 爐/窯散熱量MJ/t-AO 327.2 555.7 年運轉(zhuǎn)率% 92—94 60 第三章 氧化鋁循環(huán)焙燒爐熱工計算 3-1、氧化鋁循環(huán)焙燒爐工藝計算的原始數(shù)據(jù)及條件 一、設(shè)計日產(chǎn)1200噸氧化鋁流態(tài)化焙燒爐 二、焙燒爐工藝原始數(shù)據(jù)及工藝特點 以貴州鋁
43、廠為例,工藝流程均引進德國魯奇流態(tài)化焙燒爐 1、工藝條件 ①焙燒物料:氫氧化鋁 Al(OH)3; ②氫氧化鋁含水率:10%~12%; ③氫氧化鋁溫度:54℃; ④氫氧化鋁成分:(見表3~1) 表3~1 氫氧化鋁成分 成 分 Al(OH)3 Fe2O3 SiO2 Na2O 灼 堿 % 65.097 0.006 0.031 0.376 34.49 ⑤氫氧化鋁顆粒平均直徑:ds=7.5×10-5 m; ⑥氫氧化鋁重度:Y=2500 kg/m3; ⑦燃料:重油預(yù)熱溫度=150℃; ⑧電收塵器煙氣溫度:重油預(yù)熱溫度t油=150℃; ⑨煙氣排空含
44、塵量:< 50 mg/Nm3; ⑩爐窯灰循環(huán)量:3~5倍; 出爐窯(140)氧化鋁溫度:???=960℃~1000℃; 出冷卻機(156)氧化鋁溫度: =80℃~82℃; 氧化鋁密度:=3900 kg/m3; 重油的近似成分如下: C燃%=86.4 H燃%=12.7 N燃%+O燃%=0.5 S燃%=0.4 A干=0.1 W用%=2 重油的比熱(近似取):=1.80~2.10 KJ/kg℃ 重油的潛熱(近似取):=167~251 KJ/kg 助燃空氣的入口溫度:=25℃~30℃ 空氣過剩系數(shù):n=1.1~1.2。 2、工藝流程及
45、熱工操作制圖見附圖。 3、工藝特點請參照山東鋁廠魯奇流態(tài)化焙燒爐。 4、設(shè)計任務(wù)說明書及工藝流程圖主體爐圖。 3-2、氧化鋁循環(huán)焙燒爐工藝過程的物料平衡及物料平衡表 一、氧化鋁循環(huán)焙燒爐工藝過程的物料衡算 1、焙燒氫氧化鋁的物料平衡 2Al(OH)3==Al2O3+3H2O 2×78 ==101.96 +3×18 1.53kg Al(OH)3==1kg Al2O3+0.53kg H2O 因此,生產(chǎn)1 Kg氧化鋁析出 54102==0.53 kg結(jié)晶水/kg—AO 0.804—換算成標(biāo)準(zhǔn)狀態(tài)下蒸汽的密度(18/22.4)。已
46、知氫氧化鋁的含水率12%,則1 KgAl2O3析出 1.53×0.120.88=0.208 kg-附著水 或 0.2080.804=0.259 m3/kg-AO 焙燒爐的產(chǎn)能為 1200t/d,則為50噸/時氧化鋁將有 (0.66+0.259)×50×103==45950m3/h的蒸汽進入氣相,因此必須向焙燒爐中加入Al(OH)3 (1+0.5+0.208)×=86900 kg/h 入爐時干料:(1+0.53)×=76500kg/h 表3-2:氧化鋁循環(huán)焙燒爐工藝過程的物料平衡及物料平衡表 ? 進入物料 輸出物料 項目 數(shù)
47、值 項目 數(shù)值 kg/t-AlO % kg/t-AlO % 入爐重油 70.7 2.3 產(chǎn)品氧化鋁 1000 32.4 入爐干AH 1530.1 50.3 出爐干煙氣 1866.8 60.6 AH附著水 208.6 6.9 出爐水汽 214.8 6.9 入爐干空氣 1235.3 40.5 進出差值 36.9 1.2 收入物料總量 3044.7 100 支出合計 3081.6 100 3-3、燃料的燃燒計算及結(jié)果表 已知發(fā)生爐重油成分為: C燃%=86.4 H燃%=12.7 N燃%+O燃%=0.5
48、 S燃%=0.4 A干%=0.1 W用%=2 重油初始溫度為150℃,空氣過剩系數(shù)1.1—1.2 1)將重油成分換算成應(yīng)用基y,(W用=Wy=Ww...) 燃料計算應(yīng)根據(jù)燃料的供用成分來進行,因此,需將可燃組成換算成供用成分。故可得重油各成分的供用成分如下: A用%=A干%×=0.1×=0.098 供用成分的換算系數(shù)為: = -------干燥成分值換算為供用成分值的換算系數(shù) C用%=C燃×=86.4×0.979=84.59 (N用%+O用%)=( N燃%+O燃%)×=0.979×0.5=0.49 N用%=76.8%×(N用%+O用%)=0.768×0.4
49、9=0.38 O用%= (N用%+O用%)- N用%=0.49-0.38=0.11 S用%= S燃%×=0.4×0.979=0.39 H用%= H燃%×=12.7×0.979=12.43 W用%=2 2)燃料(重油)低發(fā)熱QDW的計算: QDW=339 C用%+1030 H用%-109(O用%- S用%)-25 W用% =339×84.59+1030×12.43-109(0.11-0.39)-25×2 =41459.4 KJ/kg-重油 3) 理論空氣需要量Lo及實際空氣需要量的計算: (Nm3-空氣/kg-重油) Lo= =10.84 ( Nm3-空氣/
50、kg-重油) 取過??諝庀禂?shù)1.2,則=nLo=1.2×10.84=13.01 (Nm3-空氣/Kg-重油) 4) 燃料產(chǎn)量Vo、Vn的計算: (Nm3—空氣/Nm3—重油) 由質(zhì)料得: V=×=1.579 Nm3/kg V=(+)×=1.417 Nm3/kg V=×=0.00273 Nm3/kg V=(13.01-10.84)=0.456 Nm3/kg V=×+×13.01=10.281 Nm3/kg 即:Vn=V+V+V+ V+ V=13.736 Nm3/kg 理論燃燒產(chǎn)物Vo
51、 = Vn -(n-1)Lo 即:Vo =13.736-(1.2-1)×10.84=11.566 Nm3/kg 5) 燃燒產(chǎn)物成分計算% CO2=×100%=×100%=11.49% H2O=×100%=×100%=10.32% O2=×100%=×100%=3.32% N2=×100%=×100%=74.85% SO2=×100%=×100%=0.02% 重油燃燒成分%如下: CO2%=11.49 H2O%=10.32 O2%=3.32 N2%=74.85 SO2%=0.02 3-4、氧化鋁循環(huán)焙燒爐工藝過程的熱平衡計算 按1kg
52、氧化鋁計算,并假設(shè)焙燒無逸塵 一、熱收入: KJ/kg—AO [MJ/t—AO] 1、全部燃料的燃燒熱:(KJ) =×=41459.4 (KJ) ——燃料單耗 kg-重油/kg—AO 2、燃料帶入物理熱: (KJ) =×T =2.0KJ/kg℃ T=150℃ ∴=×2.0×150=300 (KJ) 3、入爐空氣帶入物理熱:(KJ) =××× 取=20℃~30℃,查附表=1.372 KJ/Nm3℃ ∴=×13.01×1.372×25=446.2 (KJ) 4、預(yù)熱
53、焙燒前濕氫氧化鋁帶入的物理熱:(KJ) = 已知:=1.53kg…………重量 =1.35KJ/kg℃…………AH比熱 =54℃ =0.208kg…………附著水重量 =4.187 KJ/kg℃ ∴=(1.53×1.35+0.208×4.187)×54=158.6 (KJ) 其中,干AH的物理熱 =(1.53×1.35)×54=111.5 (KJ) 附著水帶入的物理熱 =-=158.6-111.5=47.1 (KJ) 5、轉(zhuǎn)變?yōu)闀r放出的熱: (KJ) 設(shè)轉(zhuǎn)變量為20%
54、~30%, 轉(zhuǎn)變?yōu)榉艧?2KJ/kg-Ao 即:=92×0.3=27.6 (KJ) ∴熱收入總計: =41459.4+300+446.2+158.6+27.6 =42205.6+186.2 (KJ) 二、發(fā)熱支出: KJ/kg—AO [MJ/t—AO] 1、焙燒和冷卻后帶走的熱: (KJ) 設(shè)只用空氣冷卻到80℃~82℃,并忽略不能回收的冷卻水帶走熱。 =×× =1kg =0.841KJ/kg℃ =80℃ ∴=1×0.841×80=67.28 (KJ) 2、蒸發(fā)水份和加熱水蒸氣到廢氣溫度的耗熱:(KJ)
55、 =[×(100-)+595+×(-100)] -----水蒸氣在排氣溫度下的比熱KJ/kg℃ =150℃ =0.3567千卡/標(biāo)m3 595-----水蒸氣在100℃的潛熱 千卡/kg ==0.53+0.208=0.738 kg =54℃-----濕的初始溫度 ∴=0.738×[1×(100-54)+595+0.3567××(150-100)] ×4.187 =2049.28 (KJ) 3、分解用熱: (KJ) =1×460=460 (KJ) 460-----轉(zhuǎn)變?yōu)楹偷奈鼰? 4、燃料燃燒后排出廢氣帶走的熱
56、: (KJ) =(+++)××× =(1.30×0.0332+1.75×0.1149+1.50×0.1032+1.30×0.7485) ×13.736×150 =2827.04 (KJ) 5、焙燒爐散熱損失熱: (KJ) 設(shè)散熱損失為熱收入的10% =0.10=0.10×(42205.6+186.2) =4220.56+18.62 (KJ) ∴熱支出總計: ===++++ =67.28+2049.28+460+2827.04+(4220.56+18.62) =7047.6+2595.2
57、 (KJ) 令: 即:42205.6+186.27047.6+2595.2 =0.06852 Kg-重油/Kg-AO 已知燃料單耗為68.52 Kg-重油/t-AO 則:① 重油燃燒熱: 0.06852×41459.4=2840.8 KJ/kg-AO ② 單位時間重油消耗量(產(chǎn)能為1200t/d) 0.06852×1200×103kg/24h=3426 kg /h ③ 每小時耗空氣量 3426 kg /h·=3426×13.01=44572.26 Nm3空氣/h ④流態(tài)化焙燒爐的熱效率: ×100% =×10
58、0% =×100% =88.33% 3-5、氧化鋁循環(huán)焙燒爐工藝過程的熱平衡計算表(見表3-3) 根據(jù)§3-2、§3-3、§3-4的計算可制出表3-3: 以生產(chǎn)噸產(chǎn)品氧化鋁為基礎(chǔ)的1200t循環(huán)流態(tài)化焙燒爐的熱平衡表 熱 收 入 熱 支 出 項 目 MJ/t-AO (%) 項 目 MJ/t-AO (%) 燃料燃燒熱 2840.80 92.29 焙燒和冷卻后氧化鋁帶出熱 67.28 2.19 燃料帶入物理熱
59、 20.56 0.67 附著水蒸發(fā)吸熱 2049.28 66.58 入爐空氣帶入物理熱 30.57 0.99 氫氧化鋁分解用熱 460.00 14.94 濕氫氧化鋁帶入的物理熱 158.60 5.15 廢氣帶走熱 193.71 6.29 氧化鋁晶型轉(zhuǎn)變放熱 27.60 0.90 爐體散熱損失 307.81 10.00 總熱收入 3078.13 總熱支出 3078.08 誤
60、差=總熱支出-總熱收入=3078.13 -3078.08=0.05 3-6、氧化鋁循環(huán)焙燒爐工藝過程的熱平衡與氣態(tài)懸浮焙燒爐的熱平衡比較 表3-4 貴州某鋁廠氫氧化鋁循環(huán)流態(tài)化焙燒爐熱平衡表 熱 收 入 熱 支 出 項 目 MJ/t-AO (%) 項 目 MJ/t-AO (%) 重油燃燒熱 3099 89.25 成品氧化鋁帶出熱 170.4 4.91 重油帶入物理
61、熱 29.7 0.86 12%氫氧化鋁蒸發(fā)熱 468.7 13.50 12%的氫氧化鋁附著水熱 158.5 4.56 氧化鋁分解耗熱 1884 54.26 冷卻水帶入物理熱 149.3 4.30 出爐廢氣帶走熱 495.4 14.27 空氣帶入物理熱 35.75 1.03 未回收氧化鋁粉塵帶走熱 53.36 1.54
62、 焙燒爐體散熱 327.2 9.42 焙燒和冷卻后氧化鋁帶出熱 72.8 2.10 總熱收入 3472.25 總熱支出 3471.86 誤差=總熱支出-總熱收入=3471.86-3472.25=-0.39 表3-5 某鋁廠氧化鋁懸浮焙燒爐工藝過程的熱平衡計算表 熱 收 入 熱 支 出 項 目 KJ/kg-AO
63、 (%) 項 目 KJ/kg-AO (%) 燃料燃燒熱 3158.2 93.30 燃燒和冷卻氧化鋁帶出熱 242.84 7.17 燃料帶入物理熱 13.43 0.39 附著水吸熱 2061.62 60.91 入爐空氣帶入物理熱 21.62 0.64 氧化鋁分解耗熱 460.0 13.59 濕氫氧化鋁帶入物理熱 147 4.34 粉塵熱損失 39.7 1.
64、17 氧化鋁晶型轉(zhuǎn)變放熱 27.6 0.82 廢氣帶走熱 242.12 7.15 循環(huán)物料帶入熱 17 0.50 爐體散熱 338.49 10.0 流化冷卻器帶入熱 略 誤差=熱支出-熱收入=3384.77-3384.88=-0.11 總熱收入 3384.88 總熱支出 3384.77 由上兩表知: ①在表 3-4中,由表中數(shù)據(jù)可計算出該爐的熱效
65、率: 而在表 3-5 中,其熱效率為: ② 比較 與流態(tài)化循環(huán)焙燒爐相比,懸浮焙燒爐的熱耗高、效率低。懸浮焙燒爐的熱效率為69.0%,而流態(tài)化焙燒中為75.9%,就那上面所計算的數(shù)據(jù)可知不管在熱耗方面,還是在效率方面,都比懸浮焙燒有更好的優(yōu)越性。現(xiàn)將實際測量熱耗分布與設(shè)計值在同等條件下進行比較知,爐子熱耗高有本身的原因,也與運行熱工機制不佳有關(guān)。 a、焙燒反應(yīng)熱耗高、 這是設(shè)計計算與產(chǎn)品品的型結(jié)構(gòu)不符合造成的,其中轉(zhuǎn)晶熱是不變的。由計算知,設(shè)計上給出的反應(yīng)熱是以生成氧化鋁產(chǎn)品的組成為r-Al2O360%、α-Al2O3 40%盡心的計算,
66、而文字說明氧化鋁產(chǎn)品中α-Al2O3 含量不大于20%, 可見設(shè)計計算與實際不符。而3-5表中鋁廠產(chǎn)品α-Al2O3實測為5.6%,按本行業(yè)標(biāo)準(zhǔn),焙燒過程中的轉(zhuǎn)晶吸熱為828.53 MJ/t-AO,比設(shè)計理論值593MJ/t-AO高出235.5MJ/t-AO,另外由于出爐廢氣溫度比設(shè)計值高近500C,也使反應(yīng)熱中的結(jié)晶水蒸發(fā)發(fā)熱增大,而要降低反應(yīng)熱損失必須強化轉(zhuǎn)晶反應(yīng),提高氧化鋁產(chǎn)品中α-Al2O3含量——(r-Al2O3 60轉(zhuǎn)為α-Al2O3是放熱過程且促成必須反應(yīng)的升溫耗熱下于轉(zhuǎn)晶放熱);同時降低放熱出爐溫度。如按r-Al2O320%計算,則反應(yīng)熱至少可降低106MJ/t-AO,使反應(yīng)熱降為2256MJ/t-AO,但要達到設(shè)計值很困難,是不現(xiàn)實的。 b、出爐廢氣熱耗高 這一項結(jié)果大的主要原因是產(chǎn)品顆粒細。造成爐里面的物料、熱量后移,出爐廢氣量大及溫度高所致。按設(shè)計要求,PO1出口溫度可控制在1500C左右,同時由于熱量后移,使PO2下降管阻力增大,從而排風(fēng)機負(fù)荷增加,導(dǎo)致PO3—PO2—PO1出口管漏風(fēng)量大,如能將出爐咽氣溫度降為150℃左右,則可降低出爐咽氣熱損失160MJ
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。